Skip to main content
Log in

An Efficient Dealkalization of Red Mud Through Microwave Roasting and Water Leaching

  • Health, Safety and Environmental Sustainability in Aluminum Recovery
  • Published:
JOM Aims and scope Submit manuscript

Abstract

How to obtain an efficient dealkalization process is a key issue for the resource treatment process of red mud. In this work, CaO was added to red mud and then mixed by ball milling after the mixture had been microwave roasted and water leached to achieve efficient dealkalization. The comparative investigation between the conventional roasting and microwave roasting-water leaching process was conducted. After that, the main factors and the mechanism of dealkalization of red mud under microwave roasting conditions were discussed. The results show that microwave roasting has better dealkalization efficiency and less energy consumption than conventional roasting under the same conditions. The dealkalization rate arrived at 84.04% under the optimum conditions, i.e., CaO/SiO2 molar ratio 2.4, microwave power 2.5 kW, roasting temperature 500°C, roasting time 45 min, liquid-solid ratio 8 mL/g, leaching temperature 90°C and leaching time 80 min. Ball milling promoted the mixing degree of red mud and CaO. The microwave roasting could effectively improve the crystal phase transformation of the alkali component in the red mud throughout the roasting process. The alkali metal component in the red mud was significantly extracted. The research can provide an idea for dealkalization and resource utilization of red mud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Xue, X. Kong, F. Zhu, W. Hartley, and Y. Li, Environ. Sci. Pollut. R. 23, 12822 https://doi.org/10.1007/s11356-016-6478-7 (2016).

    Article  Google Scholar 

  2. F. Lyu, Y. Hu, L. Wang, and W. Sun, J. Hazard. Mater. 403, 123671 https://doi.org/10.1016/j.jhazmat.2020.123671 (2020).

    Article  Google Scholar 

  3. D.Y. Liu, and C.S. Wu, Materials. 5, 1232 https://doi.org/10.3390/ma5071232 (2012).

    Article  Google Scholar 

  4. R. Zhang, S. Zheng, S. Ma, and Y. Zhang, J. Hazard. Mater. 189, 827 https://doi.org/10.1016/j.jhazmat.2011.03.004 (2011).

    Article  Google Scholar 

  5. T. Tian, J. Zhou, F. Zhu, Y. Ye, Y. Guo, W. Hartley, and S. Xue, J. Enviro. Sci. 85, 74 https://doi.org/10.1016/j.jes.2019.05.005 (2019).

    Article  Google Scholar 

  6. B. Jones, R.J. Haynes, and I.R. Phillips, J. Environ. Manage. 95, 29 https://doi.org/10.1016/j.jenvman.2011.09.014 (2012).

    Article  Google Scholar 

  7. B. Das, and K. Mohanty, Renew. Energ. 143B, 1791 https://doi.org/10.1016/j.renene.2019.05.114 (2019).

    Article  Google Scholar 

  8. Y. Wang, T.A. Zhang, G. Lyu, F. Guo, W. Zhang, and Y. Zhang, J. Clean. Prod. 188, 456 https://doi.org/10.1016/j.jclepro.2018.04.009 (2018).

    Article  Google Scholar 

  9. G.L. Zhang, S.C. Li, X.Y. Zhang, and Z.K. Wang, Qingdao Technol. Univ. 33, 59 https://doi.org/10.3969/j.issn.1673-4602.2012.04.013 (2012).

    Article  Google Scholar 

  10. J.Q. Li, Q. Long, and B.J. Xu, Light Met. 11, 11 https://doi.org/10.1016/S1874-8651(10)60095-6 (2009).

    Article  Google Scholar 

  11. G. Hu, F. Lyu, S.A. Khoso, H. Zeng, W. Sun, and H. Tang, Hydrometallurgy 196, 105422 https://doi.org/10.1016/j.hydromet.2020.105422 (2020).

    Article  Google Scholar 

  12. Z. Wang, M.F. Han, Y.H. Zhang, and F.S. Zhou, Bull. Chin. Ceramic Soc. 32, 1851 (2013).

    Google Scholar 

  13. N.W. Menzies, I.M. Fulton, and W.J. Morrell, J. Environ. Qual. 33, 2004 https://doi.org/10.2134/jeq2004.1877 (1877).

    Article  Google Scholar 

  14. Z. Liu, and H. Li, Hydrometallurgy 155, 29 https://doi.org/10.1016/j.hydromet.2015.03.018 (2015).

    Article  Google Scholar 

  15. X. Zhu, W. Li, and X. Guan, J. Hazard Mater. 286, 85 https://doi.org/10.1016/j.jhazmat.2014.12.048 (2015).

    Article  Google Scholar 

  16. F. Zuo, A. Badev, S. Saunier, D. Goeuriot, R. Heuguet, and S. Marinel, J. Eur. Ceram. Soc. 34, 3103 https://doi.org/10.1016/j.jeurceramsoc.2014.04.006 (2014).

    Article  Google Scholar 

  17. S. Galema, Chem. Soc. Rev. 26, 233 (1997).

    Article  Google Scholar 

  18. S.W. Kingman, W. Vorster, and N.A. Rowson, The influence of mineralogy on microwave assisted grinding. Miner. Eng. 13, 313 https://doi.org/10.1016/S0892-6875(00)00010-8 (2000).

    Article  Google Scholar 

  19. R.K. Amankwah, A.U. Khan, C.A. Pickles, and W.T. Yen, Min. Proc. Ext. Met. Rev. 114, 30 https://doi.org/10.1179/037195505X28447 (2005).

    Article  Google Scholar 

  20. A.N. Savenok, Status and prospects of development of metallurgical production in belarus. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY). 4, 10 (2018).

    Article  Google Scholar 

  21. C. Yang, J. Li, Q. Tan, L. Liu, and Q. Dong, ACS. Sustain. Chem. Eng. 5, 3524 https://doi.org/10.1021/acssuschemeng.7b00245 (2017).

    Article  Google Scholar 

  22. B. Rui, X.L. Wang, D.X. Liu, and Y. Zhang, Powder Technol. 333, 277 https://doi.org/10.1016/j.powtec.2018.04.031 (2018).

    Article  Google Scholar 

  23. W.J. Bruckard, C.M. Calle, R.H. Davidson, A.M. Glenn, S. Jahanshahi, M.A. Somerville, G.J. Sparrow, and L. Zhang, Miner. Process. Extr. Metall. Rev. 119, 18 https://doi.org/10.1179/037195509x12518785461760 (2013).

    Article  Google Scholar 

  24. W. Liu, S. Sun, and L. Zhang, Miner Eng. 39, 213 https://doi.org/10.1016/j.mineng.2012.05.021 (2012).

    Article  Google Scholar 

  25. H.N. Dash, S. Hota, and B.B. Kar, Mater. Today: Proc. 2214, 7853 https://doi.org/10.1016/j.matpr.2021.01.256 (2021).

    Article  Google Scholar 

  26. N. Chandra, S.S. Amritphale, and D. Pal, J. Hazard. Mater. 186, 293 https://doi.org/10.1016/j.jhazmat.2010.10.109 (2011).

    Article  Google Scholar 

  27. S.G. Xue, M. Jun, and J. Jiang, Environ. Sci. (China). 77, 1 https://doi.org/10.1016/j.jes.2018.05.016 (2018).

    Article  Google Scholar 

  28. F. Zhu, S. Xue, W. Hartley, L. Huang, and X. Li, Environ. Sci. Pollut. Res. Int. 23, 1 https://doi.org/10.1007/s11356-015-5537-9 (2015).

    Article  Google Scholar 

  29. W. Zhao, J. Chen, X. Chang, S. Guo, C. Srinivasakannan, C. Guo, and J. Peng, Appl. Surf. Sci. 300, 171 https://doi.org/10.1016/j.apsusc.2014.02.038 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Chongqing University of Technology's Innovation Project (clgycx20202055) and the Innovation Project supported by Chongqing Bureau of Science and Technology (cstc2017shmsA100009) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Quan.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, K., Quan, X., Jiang, Q. et al. An Efficient Dealkalization of Red Mud Through Microwave Roasting and Water Leaching. JOM 74, 3221–3231 (2022). https://doi.org/10.1007/s11837-022-05289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05289-x

Navigation