Skip to main content
Log in

Compression and Wear Properties of Ultrafine Al2O3p/Iron Composites Prepared by Cast Infiltration

  • Advances in Characterization of Functional Composite Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effects of ceramic particle size and honeycomb architecture on the compressive mechanical properties and impact abrasive wear properties of ultrafine Al2O3p/high-chromium cast iron (HCCI) composites were investigated. The Al2O3p sizes are 1200 mesh and 120 mesh. The results show that the compressive strength and fracture strain of the honeycomb architecture composite (HAC) is 2021 MPa and 7.2%, which is 25.6% and 7.0% higher than those of the Al2O3p uniformly distributed composite (UDC), respectively. Therefore the composite architecture can effectively increase both the strength and toughness. Besides, the compressive strength of the UDC containing 1200 mesh Al2O3p is 10% higher than that of the 120 mesh Al2O3p reinforced UDC. Therefore, ultrafine particles can improve the compressive strength of iron matrix composites more effectively. Furthermore, the HAC possesses the highest wear resistance among all researched materials, which is 34.2% and 40.3% higher than those of the UDC and HCCI, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Li, Technical Roadmap of China Casting Wear-Resistant Material Industry (Mechanical Engineering Press, China, 2013).

    Google Scholar 

  2. Y.M. Gao, Foundry 61(09), 985 (2012).

    Google Scholar 

  3. W.P. Chen, S.F. Yang, and M.Y. Han, Chin. J. Nonferrous Met. https://doi.org/10.19476/j.ysxb.1004.0609.2010.02.014 (2010).

    Article  Google Scholar 

  4. N. Chawla and K.K. Chawla, JOM. https://doi.org/10.1007/s11837-006-0231-5 (2006).

    Article  Google Scholar 

  5. A. Mandal, J.K. Tiwari, and B. AlMangour, Tribol. Int. https://doi.org/10.1016/j.triboint.2020.106525 (2020).

    Article  Google Scholar 

  6. N. Kang, W.Y. Ma, and F.H. Li, Vacuum. https://doi.org/10.1016/j.vacuum.2018.04.044 (2018).

    Article  Google Scholar 

  7. C.L. Xu, D.H. Lu, and L. Tang, Acta Mater. Compos. Sin. https://doi.org/10.13801/j.cnki.fhclxb.20200220.002 (2020).

    Article  Google Scholar 

  8. F. Saba, F.M. Zhang, S.L. Liu, and T.F. Liu, Compos. B. https://doi.org/10.1016/j.compositesb.2018.12.014 (2019).

    Article  Google Scholar 

  9. B. AlMangour, D. Grzesiak, and J.M. Yang, Mater. Des. https://doi.org/10.1016/j.matdes.2016.02.022 (2016).

    Article  Google Scholar 

  10. A. Farid and S.J. Guo, Acta Mater. https://doi.org/10.1016/j.actamat.2006.10.009 (2007).

    Article  Google Scholar 

  11. A. Mortensen and J. Llorca, Annurev-matsci. https://doi.org/10.1146/annurev-matsci-070909-104511 (2010).

    Article  Google Scholar 

  12. H. Klaasen and J. Kübarsepp, Wear. https://doi.org/10.1016/j.wear.2005.12.004 (2006).

    Article  Google Scholar 

  13. E. Pagounis and V.K. Lindroos, Mater. Sci. Eng. A. https://doi.org/10.1016/S0921-5093(97)00710-7 (1998).

    Article  Google Scholar 

  14. J.E.P. Ipiña, A.A. Yawny, R. Stuke, and C.G. Oliver, Mater. Res. https://doi.org/10.1590/S1516-14392000000300005 (2000).

    Article  Google Scholar 

  15. M. Ashby, Scr. Mater. https://doi.org/10.1016/j.scriptamat.2012.04.033 (2013).

    Article  Google Scholar 

  16. D. Zhang, G.D. Zhang, and Z.Q. Li, Mater. China 29(04), 7 (2010).

    Google Scholar 

  17. H.X. Peng, Z. Fan, and J.R.G. Evans, J. Microsc. 201(2), 333 (2001).

    Article  MathSciNet  Google Scholar 

  18. D.H. Lu, G.Y. He, L.K. Wang, and C. Liao, Mater. Sci. Technol. https://doi.org/10.1080/02670836.2019.1590504 (2019).

    Article  Google Scholar 

  19. C.Y. Jiang, D.H. Lu, W. Ma, G.Y. He, and S.A. Ahmad, Mater. Commun. https://doi.org/10.1016/j.mtcomm.2021.102623 (2021).

    Article  Google Scholar 

  20. W.H. Gong, D.H. Lu, G.Y. He, W. Ma, and Q.H. Yan, J. Iron Steel Res. Int. https://doi.org/10.1007/s42243-021-00670-7 (2021).

    Article  Google Scholar 

  21. M.J. Zhou, Y.B. Jiang, and F.F. Wen, Int. Mater. Rev. https://doi.org/10.11896/j.issn.1005-023X.2017.014.025 (2017).

    Article  Google Scholar 

  22. M.J. Zhou, Y.H. Jiang, and D.H. Lu, Int. Mater. Rev. https://doi.org/10.11896/j.issn.1005-023X.2018.24.021 (2018).

    Article  Google Scholar 

  23. H. Berns, Wear 254(1–2), 47 (2003).

    Article  Google Scholar 

  24. W. Ma, D.H. Lu, L. Tang, W.H. Gong, and Q.H. Yan, Mater. Res. Express. https://doi.org/10.1088/2053-1591/abe019 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support for this work from the National Natural Science Foundation of China (51461025) and the National Natural Science Foundation of China (51865024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehong Lu.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lu, D., Ma, W. et al. Compression and Wear Properties of Ultrafine Al2O3p/Iron Composites Prepared by Cast Infiltration. JOM 74, 1878–1885 (2022). https://doi.org/10.1007/s11837-022-05237-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05237-9

Navigation