Skip to main content
Log in

Enhanced Interfacial Bonding in Copper/Diamond Composites via Deposition of Nano-copper on Diamond Particles

  • Powder Metallurgy of Non-Ferrous Metals: Striving Toward Technology Advancement
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The currently available heat-sink materials cannot meet the requirements for the 5G and beyond technology. Copper (Cu)/diamond composites have been proposed because Cu and diamond are excellent thermal conductors, while diamond has a very low coefficient of thermal expansion. Mixing Cu and diamond to form a composite seems a straightforward approach. However, this simple approach has never succeeded because, chemically, Cu does not wet diamond. Therefore the Cu-diamond interface cannot be tightly bonded, leading to an inferior thermal conductivity. This study presents a modified press and sinter process for depositing Cu submicronic particles onto diamond reinforcements prior to densification by hot pressing. The initial results obtained from microstructural observations and x-ray photoelectron spectroscopy have shown that our strategy can lead to successful Cu deposition onto diamond particles. The Cu deposition leads to a well-bonded interface between the copper matrix and diamond reinforcement, ultimately resulting in excellent thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.M. Abyzov, S.V. Kidalov, and F.M. Shakhov, J. Mater. Sci. 46, 1424 (2011).

    Article  Google Scholar 

  2. W.Y. Tsai, G.-R. Huang, K.-K. Wang, C.-F. Chen, and J.C. Huang, Materials (Basel) 10, 1 (2017).

    Google Scholar 

  3. C. Zweben, JOM 50, 47 (1998).

    Article  Google Scholar 

  4. J.E. Graebner, Diamond: Electronic Properties and Applications, ed. L.S. Pan and D.R. Kania (Springer, US: Boston, 1995), p. 285.

  5. K. Yoshida, and H. Morigami, Microelectron. Reliab. 44, 303 (2004).

    Article  Google Scholar 

  6. S.V. Kidalov, and F.M. Shakhov, Materials 2, 2467 (2009).

    Article  Google Scholar 

  7. Q.K. Kang, X. He, S. Ren, L. Zhang, M. Wu, C. Guo, W. Cui, and X. Qu, Appl. Therm. Eng. 60, 423 (2013).

    Article  Google Scholar 

  8. M. Zain-ul-abdein, K. Raza, F.A. Khalid, and T. Mabrouki, Mater. Des. 86, 248 (2015).

    Article  Google Scholar 

  9. Y. Zhang, H.L. Zhang, J.H. Wu, and X.T. Wang, Scr. Mater. 65, 1097 (2011).

    Article  Google Scholar 

  10. S. Ma, N. Zhao, C. Shi, E. Liu, C. He, F. He, and L. Ma, Appl. Surf. Sci. 402, 372 (2017).

    Article  Google Scholar 

  11. H. Bai, N. Ma, J. Lang, C. Zhu, and Y. Ma, Compos. B 52, 182 (2013).

    Article  Google Scholar 

  12. J. Li, X. Wang, Y. Qiao, Y. Zhang, Z. He, and H. Zhang, Scr. Mater. 109, 72 (2015).

    Article  Google Scholar 

  13. Ł Ciupiński, M.J. Kruszewski, J. Grzonka, M. Chmielewski, R. Zielińsk, D. Moszczyńska, and A. Michalski, Mater. Des. 120, 170 (2017).

    Article  Google Scholar 

  14. Q.L. Che, X.K. Chen, Y.Q. Ji, Y.W. Li, L.X. Wang, S.Z. Cao, Y.G. Jiang, and Z. Wang, Mater. Sci. Semicond. Process. 30, 104 (2015).

    Article  Google Scholar 

  15. J. Grzonka, M.J. Kruszewski, M. Rosiński, Ł Ciupiński, A. Michalski, and K.J. Kurzydłowski, Mater. Charact. 99, 188 (2015).

    Article  Google Scholar 

  16. A.M. Abyzov, S.V. Kidalov, and F.M. Shakhov, Appl. Therm. Eng. 48, 72 (2012).

    Article  Google Scholar 

  17. ASTM, B962-17 Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes Principle. 2017: West Conshohocken, PA.

  18. S. Ida, T. Tsubota, S. Tanii, M. Nagata, and Y. Matsumoto, Langmuir 19, 9693 (2003).

    Article  Google Scholar 

  19. S. Kono, T. Kageura, Y. Hayashi, S.-G. Ri, T. Teraji, D. Takeuchi, M. Ogura, H. Kodama, A. Sawabe, M. Inaba, A. Hiraiwa, and H. Kawarada, Diamond Relat. Mater. 93, 105 (2019).

    Article  Google Scholar 

  20. G. Alba, M.P. Villar, R. Alcántara, J. Navas, and D. Araujo, Nanomaterials 10, 1193 (2020).

    Article  Google Scholar 

  21. R.J. Stokes, and D.F. Evans, Fundamentals of Interfacial Engineering (Wiley-VCH, New York, 1996), p 531.

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the University of Auckland through the Faculty Research Development Fund (FRDF) Programme (Contract No. 3717129).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Dilawer Hayat or Peng Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, M.D., Singh, H., Karumbaiah, K.M. et al. Enhanced Interfacial Bonding in Copper/Diamond Composites via Deposition of Nano-copper on Diamond Particles. JOM 74, 949–953 (2022). https://doi.org/10.1007/s11837-021-05054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05054-6

Navigation