Skip to main content
Log in

Microstructure and Deformation Behavior of Additively Manufactured 17–4 Stainless Steel: Laser Powder Bed Fusion vs. Laser Powder Directed Energy Deposition

  • Solid Freeform Fabrication 2021
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study aims to compare the microstructure of 17–4 PH stainless steel (SS) manufactured via laser powder bed fusion (L-PBF) and laser powder directed energy deposition (LP-DED) in non-heat treated (NHT) and heat treated conditions. In addition, the room-temperature tensile behavior of heat-treated L-PBF and LP-DED 17–4 PH SS has been investigated and compared with that of the wrought counterpart with the same heat treatment conditions. The results show that the L-PBF specimens have a finer microstructure (ferrite + lath martensite) than the LP-DED ones (massive ferrite + Widmanstätten ferrite) in NHT condition. Electron backscatter diffraction analysis shows that the L-PBF and LP-DED specimens have twin-based substructure lath martensite after heat treatment. Despite the lower tensile strength of the LP-DED specimens compared with the L-PBF ones, the ductility of peak-aged LP-DED specimens was reduced due to the presence of the δ-ferrite phase having a significant plastic deformation incompatibility with the martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

taken from ASTM A69337

Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Shamsaei, A. Yadollahi, L. Bian, and S.M. Thompson, Addit. Manuf. 8, 12 (2015).

    Google Scholar 

  2. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Int. Mater. Rev. 57, 133 (2013).

    Article  Google Scholar 

  3. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, and D. Hui, Compos. Part B 143, 172 (2018).

    Article  Google Scholar 

  4. T.F. Babuska, B.A. Krick, D.F. Susan, and A.B. Kustas, Manuf. Lett. 28, 30 (2021).

    Article  Google Scholar 

  5. A. Jinoop, C. Paul, and K. Bindra, J. Mater. Des. Appl. 233, 2376 (2019).

    Google Scholar 

  6. R. Molaei, A. Fatemi, N. Sanaei, J. Pegues, N. Shamsaei, S. Shao, P. Li, D.H. Warner, and N. Phan, Int. J. Fatigue 132, 1 (2020).

    Article  Google Scholar 

  7. J. Simpson, J. Haley, C. Cramer, O. Shafer, A. Elliott, B. Peter, L. Love, and R. Dehoff, ORNL/TM-2019-1190. Oak Ridge Natl. Lab. 1190, 1 (2019).

    Google Scholar 

  8. Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K. Fezzaa, W. Everhart, T. Sun, and L. Chen, Addit. Manuf. 28, 600 (2019).

    Google Scholar 

  9. A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi, and P. Fino, Appl. Sci. 10, 3310 (2020).

    Article  Google Scholar 

  10. M. Ma, Z. Wang, and X. Zeng, Mater. Sci. Eng. A 685, 265 (2017).

    Article  Google Scholar 

  11. K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina, Acta Mater. 60, 2229 (2012).

    Article  Google Scholar 

  12. F. Liu, X. Lin, H. Leng, J. Cao, Q. Liu, C. Huang, and W. Huang, Opt. Laser Technol. 45, 330 (2013).

    Article  Google Scholar 

  13. L.L. Parimi, G. Ravi, D. Clark, and M.M. Attallah, Mater. Charact. 89, 102 (2014).

    Article  Google Scholar 

  14. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian, Acta Mater. 85, 74 (2015).

    Article  Google Scholar 

  15. B.E. Carroll, T.A. Palmer, and A.M. Beese, Acta Mater. 87, 309 (2015).

    Article  Google Scholar 

  16. J. Schneider, JOM 72, 1085 (2020).

    Article  Google Scholar 

  17. C. Doñate-Buendia, R. Streubel, P. Kürnsteiner, M.B. Wilms, F. Stern, J. Tenkamp, E. Bruder, S. Barcikowski, B. Gault, K. Durst, J.H. Schleifenbaum, F. Walther, and B. Gökce, Procedia CIRP 94, 41 (2020).

    Article  Google Scholar 

  18. M.R. Stoudt, R.E. Ricker, E.A. Lass, and L.E. Levine, JOM 69, 506 (2017).

    Article  Google Scholar 

  19. S. Cheruvathur, E.A. Lass, and C.E. Campbell, JOM 68, 930 (2015).

    Article  Google Scholar 

  20. W. Liu, J. Ma, M.M. Atabaki, R. Pillai, B. Kumar, U. Vasudevan, H. Sreshta, and R. Kovacevic, Lasers Manuf. Mater. Process 2, 74 (2015).

    Article  Google Scholar 

  21. S. Cao, Determination of the Fe-Cr-Ni and Fe-Cr-Mo phase diagrams at intermediate temperatures using a novel dual-anneal diffusion-multiple approach, Ph.D thesis, The Ohio State University, 2013.

  22. TCFE9 Thermo-Calc Software, 1 (2017).

  23. P.D. Nezhadfar, E. Burford, K. Anderson-Wedge, B. Zhang, S. Shao, S.R. Daniewicz, and N. Shamsaei, Int. J. Fatigue 123, 168 (2019).

    Article  Google Scholar 

  24. P.D. Nezhadfar, P. Gradl, S. Shuai, and N. Shamsaei, In Proc. 32nd Annu. Int. Solid Free. Fabr. Symp. – An Addit. Manuf. Conf. (2021).

  25. ASTM Standard E8/E8M-13a, Standard Test Methods for Tension Testing of Metallic Materials (2006).

  26. T. LeBrun, T. Nakamoto, K. Horikawa, and H. Kobayashi, Mater. Des. 81, 44 (2015).

    Article  Google Scholar 

  27. L. Facchini, N. Vicente, I. Lonardelli, E. Magalini, P. Robotti, and A. Molinari, Adv. Eng. Mater. 12, 184 (2010).

    Article  Google Scholar 

  28. M. Alnajjar, F. Christien, K. Wolski, and C. Bosch, Addit. Manuf. 25, 187 (2019).

    Google Scholar 

  29. P.D. Nezhadfar, K. Anderson-Wedge, S.R. Daniewicz, N. Phan, S. Shao, and N. Shamsaei, Addit. Manuf. 36, 101604 (2020).

    Google Scholar 

  30. R.K. Okagawa, R.D. Dixon, and D.L. Olson, Weld. Res. Suppl. 62, 204s (1983).

    Google Scholar 

  31. P.D. Nezhadfar, R. Shrestha, N. Phan, and N. Shamsaei, Int. J. Fatigue 124, 188 (2019).

    Article  Google Scholar 

  32. C. Celada-Casero, J. Sietsma, and M.J. Santofimia, Mater. Des. 167, 107625 (2019).

    Article  Google Scholar 

  33. D.H. Ping, S.Q. Guo, M. Imura, X. Liu, T. Ohmura, M. Ohnuma, X. Lu, T. Abe, and H. Onodera, Sci. Rep. 8, 14264 (2018).

    Article  Google Scholar 

  34. C. Cayron, Acta Crystallogr. Sect. A 69, 498 (2012).

    Article  Google Scholar 

  35. P.D. Nezhadfar, A. Zarei-Hanzaki, S.S. Sohn, and H.R. Abedi, Mater. Sci. Eng. A 665, 10 (2016).

    Article  Google Scholar 

  36. G.E. Dieter and D.J. Bacon, Mechanical metallurgy (McGraw-Hill, New York, 1986).

    Google Scholar 

  37. ASTM A693-16, Standard specification for precipitation-hardening stainless and heat-resisting steel plate, sheet, and strip (2016).

  38. M.E. Stevenson, P.D. Umberger, and S.F. Uchneat, Fracture appearance and mechanisms of deformation and fracture (ASM International, 2021).

Download references

Acknowledgements

This paper is based upon the work partially funded by the National Aeronautics and Space Administration (NASA) under Award #80MSFC19C0010. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of NASA or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Shamsaei.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezhadfar, P.D., Gradl, P.R., Shao, S. et al. Microstructure and Deformation Behavior of Additively Manufactured 17–4 Stainless Steel: Laser Powder Bed Fusion vs. Laser Powder Directed Energy Deposition. JOM 74, 1136–1148 (2022). https://doi.org/10.1007/s11837-021-05032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05032-y

Navigation