Skip to main content
Log in

Field-Assisted Sintering of FeCo/MnZn Ferrite Core-Shell Structured Particles

  • Advances in Processing, Manufacturing, and Applications of Magnetic Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Core-shell FeCo/MnZn ferrite powders were prepared by the sol-gel method with ferrite contents ranging from 5.01 wt.% to 17.10 wt.%. The target composition for the MnZn ferrite shell was Mn0.8Zn0.2Fe2O4. The powders were compacted into bulk composites with FeCo separated by an oxide matrix using the field-assisted sintering technique (FAST) at 800°C for 10 min. All resulting compacts achieved relative density > 95%. As the MnZn ferrite content in the original core-shell powder increases from 5.01 wt.% to 17.10 wt.%, the saturation magnetization of the compacts decreases from 222 Am2/kg to 165 Am2/kg, and the coercivity increases from 772 A/m to 1654 A/m. XRD of the compacts indicates that a chemical reaction dissociates the spinel-structured MnZn ferrite into a rocksalt structured phase. Thermodynamics calculation indicates that the reaction happens between FeCo and MnZn ferrite at 800°C, but favors MnZn ferrite at temperatures ≤ 400°C. This prediction was substantiated by FAST consolidation at 400°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, and J.P. Liu, Adv. Mater. 23, 821. (2011).

    Article  Google Scholar 

  2. B.D. Cullity, and C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, Hoboken, 2008), pp 440–450.

    Book  Google Scholar 

  3. J.M.D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, Cambridge, 2009), pp 441–442.

    Google Scholar 

  4. H. Shokrollahi, and K. Janghorban, J. Mater. Process. Technol. 189, 1. (2007).

    Article  Google Scholar 

  5. L. Yan, and B. Yan, Metals (Basel) 8, 553. (2018).

    Article  Google Scholar 

  6. Z. Wu, X. Fan, J. Wang, G. Li, Z. Gan, and Z. Zhang, J. Alloys Compd. 617, 21. (2014).

    Article  Google Scholar 

  7. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763. (2006).

    Article  Google Scholar 

  8. M. Suárez, A. Fernández, J.L. Menéndez, R. Torrecillas, H. U. Kessel, J. Hennicke, R. Kirchner and T. Kessel, Sintering Applications, Ed. B. Ertug (London: InTechOpen, 2013), pp. 319–342.

  9. R.S. Sundar, and S.C. Deevi, Int. Mater. Rev. 50, 157. (2005).

    Article  Google Scholar 

  10. M. Streckova, R. Bures, M. Faberova, P. Kurek, P. Poupcova, H. Hadraba, V. Girman, and J. Strecka, Adv. Mater. Sci. Eng. 2015, 1. (2015).

    Article  Google Scholar 

  11. J.B. Nelson, and D.P. Riley, Proc. Phys. Soc. 57, 160. (1945).

    Article  Google Scholar 

  12. E. Wyckoff, R. Crittenden, and Z. Kristallogra, Cryst. Mater. 63, 144. (1926).

    Google Scholar 

  13. S. Sasaki, K. Fujino, Y. Takeuchi, and R. Sadanaga, Acta Crystallogra. A 36, 904. (1980).

    Article  Google Scholar 

  14. Ü. Özgür, Y.I. Alivov, C. Liu, A. Take, M.A. Reshchikov, and S. Dogan, J. Appl. Phys. 98, 041301. (2005).

    Article  Google Scholar 

  15. R. Kannan, and M.S. Seehra, Phys. Rev. B 35, 6847. (1987).

    Article  Google Scholar 

  16. R. DeHoff, Thermodynamics in Materials Science, 2nd edn. (CRC Press, Boca Raton, 2006), p 222.

    Book  Google Scholar 

  17. M.A. Willard, T.M. Heil, and R. Goswami, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 38, 725. (2007).

    Article  Google Scholar 

  18. W.M. Haynes, D.R. Lide, and B. Thomas, CRC Handbook of Chemistry and Physics, 97th edn. (CRC Press, Boca Raton, 2017), pp 869–908.

    Google Scholar 

  19. K. Fitzner, Thermochim. Acta 31, 227. (1979).

    Article  Google Scholar 

  20. E. Guzik, and K. Fitzner, Cryst. Res. Technol. 23, 863. (1988).

    Article  Google Scholar 

  21. S. Wu, A. Sun, W. Xu, Q. Zhang, F. Zhai, P. Logan, and A.A. Volinsky, J. Magn. Magn. Mater. 324, 3899. (2012).

    Article  Google Scholar 

  22. J. Kanamori, Prog. Theor. Phys. 17, 197. (1957).

    Article  Google Scholar 

  23. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, 2005), p 342.

    Google Scholar 

  24. G. Ouyang, X. Chen, Y. Liang, C. Macziewski, and J. Cui, J. Magn. Magn. Mater. 481, 234. (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from NASA SBIR under Contract Number 80NSSC19C0358 and assistance with XRD and SEM/EDS characterization in the Swagelok Center of Surface Analysis of Materials (SCSAM) at Case Western Reserve University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bowen Dong or Matthew A. Willard.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, B., Wang, H., Santillan, G. et al. Field-Assisted Sintering of FeCo/MnZn Ferrite Core-Shell Structured Particles. JOM 73, 3901–3909 (2021). https://doi.org/10.1007/s11837-021-04916-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04916-3

Navigation