Skip to main content
Log in

Adsorption–Desorption of La3+, Eu3+, and Y3+ by Mg(OH)2-Pretreated TP207 Resin

  • Advances in the Circular Economy of Lanthanides
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The adsorption–desorption behavior of La3+, Eu3+, and Y3+ by Mg(OH)2-pretreated TP207 resin in sulfate solution has been investigated. The effects of the reaction duration, pH value, flow rate, and adsorption mechanism were studied in detail. The results show that the highest adsorption capacity is obtained at solution pH of 4.0. The adsorption affinity of the resin for the different rare-earth ions lies in the order La3+ > Eu3+ > Y3+, while the static equilibrium adsorption capacity is 0.73 mmol g−1, 0.51 mmol g−1, and 0.35 mmol g−1, respectively. The optimum desorption conditions are 1 mol L−1 hydrochloric acid at a flow rate of 4 mL min−1. The desorption liquid enrichment peaks follow the order La3+ > Eu3+ > Y3+, with corresponding enrichment factors of 24, 23, and 20. The adsorption process of TP207 resin is chemisorption, and the coordination mode between Y3+ and resin functional groups is dominated by three donor atoms, but two for La3+ and Eu3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Bakke, K. Pettersen, and H. Westengen, JOM 55, 46 (2003).

    Article  Google Scholar 

  2. Z.Y. Huang, Z.Y. Zhang, J.X. Yu, Z.G. Xu, Y.L. Xu, F. Zhou, and R.A. Chi, Trans. Nonferrous Met. Soc. China 26, 3024 (2016).

    Article  Google Scholar 

  3. X. Song, M. Chang, and M. Pecht, JOM 65, 1276 (2013).

    Article  Google Scholar 

  4. H.C. Liao, H.T. Xu, and Y.Y. Hu, Trans. Nonferrous Met. Soc. China 29, 1117 (2019).

    Article  Google Scholar 

  5. G.R. Li, M. Liu, H.M. Wang, D. Zhang, F. Tang, C.W. Wang, Y.T. Zhao, G. Chen, and X.Z. Kai, JOM 72, 2332 (2020).

    Article  Google Scholar 

  6. X.P. Luo, C.J. Weng, J. Xu, P.L. Ma, X.K. Tang, and R.A. Chi, Met. Mine 43, 83 (2014).

    Google Scholar 

  7. Y.M. Yang, L. Wang, M. Xiao, J. Huang, Q.F. Lan, and Z.J. Du, Nonferrous Met. Sci. Eng. 7, 125 (2016).

    Google Scholar 

  8. G.Q. Deng and Y.M. Yang, Chin. Rare Earths 37, 129 (2016).

    MathSciNet  Google Scholar 

  9. S. Yang, Q. Xue, and H.H. Chen, Environ. Earth Sci. 75, 1102 (2016).

    Article  Google Scholar 

  10. Y.F. Xiao, Z.Y. Feng, X.W. Huang, L. Huang, Y.Y. Chen, L.S. Wang, and Z.Q. Long, Hydrometallurgy 153, 58 (2015).

    Article  Google Scholar 

  11. Y.F. Xiao, Y.Y. Chen, Z.Y. Feng, X.W. Huang, L. Huang, Z.Q. Long, and D.L. Cui, Trans. Nonferrous Met. Soc. China 25, 3784 (2015).

    Article  Google Scholar 

  12. X.W. Huang, J.S. Dong, L.S. Wang, Z.Y. Feng, Q.N. Xue, and X.L. Meng, Green Chem. 19, 1345 (2017).

    Article  Google Scholar 

  13. G.L. Yang, F.Z. Peng, Z.F. Liu, S.L. Zhang, Y. Liu, S.L. Chen, and M.L. Li, Chin. J. Rare Met. 31, 547 (2007).

    Google Scholar 

  14. N.M. Shokobayev, C. Bouffier, and T.S. Dauletbakov, Rare Met. 34, 195 (2015).

    Article  Google Scholar 

  15. S.E. Kentish and G.W. Steven, Chem. Eng. J. 84, 149 (2001).

    Article  Google Scholar 

  16. B.H. Yang, P. Wang, and G.J. Dai, Uranium Min. Metall. 10, 15 (1991).

    Google Scholar 

  17. H.B. Xu, S.Q. Zhang, J.Y. Zhou, K.Z. Li, C. Wang, and Y.M. Yang, Nonferrous Met. Sci. Eng. 8, 108 (2017).

    Google Scholar 

  18. Q.X. Shen, J.J. Mo, and C.H. Xiong, J. Chin. Rare Earth Soc. 21, 421 (2003).

    Google Scholar 

  19. C.H. Xiong and X.M. Wu, Chin. J. Inorg. Chem. 19, 1356 (2003).

    Google Scholar 

  20. B. Esma, A. Omar, and D.M. Amine, J. Radioanal. Nucl. Chem. 299, 439 (2014).

    Article  Google Scholar 

  21. B.J. Li, Y.L. Liao, L. Hu, J. Zhou, and F.R Huang, Mater. Rev. 29(15), 59 (2015).

  22. G.X. Xu, Rare Earth, 2nd ed. (Beijing: Metallurgical Industry Press, 2005), p. 58.

    Google Scholar 

  23. I. Atsushi, I. Keisuke, S. Tatsuya, A. Masao, F. Yasuhiko, M. Toshiaki, H. Mitsuo, and O. Masaki, J. Alloys Compd. 408–412, 1052 (2006).

    Google Scholar 

  24. F.Q. Liu, L.J. Li, P.P. Ling, X.S. Jing, C.H. Li, A.M. Li, and X.Z. You, Chem. Eng. J. 173, 106 (2011).

    Article  Google Scholar 

  25. P.P. Ling, F.Q. Liu, L.J. Li, X.S. Jing, B.R. Yin, K.B. Chen, and A.M. Li, Talanta 81, 424 (2010).

    Article  Google Scholar 

  26. B.N. Kumar, S. Radhika, and B.R. Reddy, Chem. Eng. J. 160, 138 (2010).

    Article  Google Scholar 

  27. A. Yuchi, T. Sato, Y. Morimoto, H. Mizuno, and H. Wada, Anal. Chem. 69, 2941 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA061901), Innovation Academy for Green Manufacture, Chinese Academy of Sciences (Grant No. IAGM2020DB10) and Doctoral Scientific Research Foundation of Jiangxi University of Science and Technology, China (Grant No. jxxjbs17077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youming Yang or Leiting Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, F., Xie, Z., Fu, C. et al. Adsorption–Desorption of La3+, Eu3+, and Y3+ by Mg(OH)2-Pretreated TP207 Resin. JOM 73, 32–38 (2021). https://doi.org/10.1007/s11837-020-04472-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04472-2

Navigation