Skip to main content

Advertisement

Log in

Phase and Microstructural Evolution of Calcium Aluminum Phosphate Cement for Potential Biological Applications: Effect of Aluminum Hydroxide Sources

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Calcium aluminum phosphate cement (CAPC) requires a practical composition for biological applications. This research aims to investigate the effect of aluminum hydroxide sources (aluminum hydroxide, boehmite, and hydratable alumina), where SECAR 71 cement and phosphoric acid are in the composition, regarding the mechanical, biological, and microstructural properties of CAPC. In vitro assessments were evaluated by immersing the samples in simulated body fluid (SBF) solution for 7 days, 14 days, and 28 days, and by MTT testing (cytotoxicity of MG-63 cells). The results revealed that the composition including hydratable alumina was superior concerning the lowest final setting time (50 min), in situ formation and growth of hydroxyapatite on its surface, as well as the compressive strength which reaches to 42 ± 10 MPa after 28 days in SBF solution. However, regarding the cytotoxicity, the cements consisting of boehmite have priority. A more detailed biological analysis is recommended to evaluate the clinical application of CAPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.D. Swift, The Development of Calcium Aluminate Phosphate Cement for Radioactive Waste Encapsulation, Doctor of Philosophy Thesis, University of Sheffield, 269 (2013).

  2. M. Radwan, H.A. El-Hamid, H. Abo-almaged, H.N. Salem, and N. Omar, Orient. J. Chem. 33, 2692 (2017).

    Google Scholar 

  3. Y.J. No, I. Roohani, and H. Zreiqat, Nanomedicine (London) 9, 1745 (2014).

    Google Scholar 

  4. Y.M. Lvov, M.M. DeVilliers, and R.F. Fakhrullin, Expert. Opin. Drug Deliv. 13, 977 (2016).

    Google Scholar 

  5. A. Taha, M. Akram, Z. Jawad, A.Z. Alshemary, and R. Hussain, Mater. Sci. Eng. C 80, 93 (2017).

    Google Scholar 

  6. T. Qin, A. Lopez, C. Ohman, H. Engqvist, C. Persson, and W. Xia, J. Appl. Biomater. Funct. Mater. 13, 241 (2015).

    Google Scholar 

  7. U. Jammalamadaka, K. Tappa, J.A. Weisman, J.C. Nicholson, and D.K. Mills, Nanotechnol. Sci. Appl. 10, 105 (2017).

    Google Scholar 

  8. S.M. Best, A.E. Porter, E.S. Thian, and J. Huang, J. Eur. Ceram. Soc. 28, 1319 (2008).

    Google Scholar 

  9. H. Cummings, W. Han, S. Vahabzadeh, and S.F. Elsawa, JOM 69, 1348 (2017).

    Google Scholar 

  10. H.H.K. Xu, P. Wang, L. Wang, C. Bao, Q. Chen, M.D. Weir, L.C. Chow, L. Zhao, X. Zhou, and M.A. Reynolds, Bone Res. 5, 1 (2017).

    Google Scholar 

  11. J. Chevalier and L. Gremillard, J. Eur. Ceram. Soc. 29, 1245 (2009).

    Google Scholar 

  12. R. Parreira, T. Andrade, A. Luz, V. Pandolfelli, and I. Oliveira, Ceram. Int. 42, 11732 (2016).

    Google Scholar 

  13. S.H. Oh, S.Y. Choi, Y.K. Lee, and K.N. Kim, J. Biomed. Mater. Res. 62, 593 (2002).

    Google Scholar 

  14. J. Werner, R. Diedel, T. Hölzel, and M. Blaurock, Int. Conf. Eur. Ceram. Soc. 10, 948 (2008).

    Google Scholar 

  15. V. Medri, M. Mazzocchi, and A. Bellosi, J. Mater. Sci. Mater. Med. 22, 229 (2011).

    Google Scholar 

  16. I. Garcia-Lodeiro, K. Irisawa, F. Jin, Y. Meguro, and H. Kinoshita, Cem. Concr. Res. 109, 243 (2018).

    Google Scholar 

  17. J. Yang, X. Hu, J. Huang, K. Chen, Z. Huang, Y. Liu, M. Fang, and X. Sun, Nanoscale 8, 3599 (2016).

    Google Scholar 

  18. J. Luo, I. Ajaxon, M.P. Ginebra, H. Engqvist, and C. Persson, J. Mech. Behav. Biomed. 60, 617 (2016).

    Google Scholar 

  19. I. Palmer, J. Nelson, W. Schatton, N.J. Dunne, F. Buchanan, and S.A. Clarke, J. Mater. Sci. Mater. Med. 27, 191 (2016).

    Google Scholar 

  20. M. Pujari-Palmer, C. Robo, C. Persson, P. Procter, and H. Engqvist, J. Mech. Behav. Biomed. 77, 624 (2018).

    Google Scholar 

  21. N. Ostrowski, A. Roy, P.N. Kumta, and A.C.S. Biomater, Sci. Eng. 2, 1067 (2016).

    Google Scholar 

  22. A. Luz, D. Gomes, and V. Pandolfelli, Ceram. Int. 41, 9041 (2015).

    Google Scholar 

  23. J. Zhang, Q. Jia, S. Yan, S. Zhang, and X. Liu, Ceram. Int. 42, 310 (2015).

    Google Scholar 

  24. R. Salomão, M. Kawamura, A. Souza, and J. Sakihama, Interceram. - Int. Ceram. Rev. 66, 28 (2017).

    Google Scholar 

  25. L.F. Koroleva, L. Larionov, and N. Gorbunova, J. Biomater. Nanobiotechnol. 3, 226 (2012).

    Google Scholar 

  26. Y. Tan, Y. Liu, and L. Grover, Cem. Concr. Res. 56, 69 (2014).

    Google Scholar 

  27. M.A. Chavda, S.A. Bernal, D.C. Apperley, H. Kinoshita, and J.L. Provis, Cem. Concr. Res. 70, 21 (2015).

    Google Scholar 

  28. O. Brand, G.K. Fedder, C. Hierold, J.G. Korvink, O. Tabata, and T. Tsuchiya, Reliability of MEMS: Testing of Materials and Devices (Berlin: Wiley, 2008), p. 133.

    Google Scholar 

  29. M. Schwartz, Smart Materials (Boca Raton: CRC, 2008), pp. 1–3.

    Google Scholar 

  30. T.M. Holden, O. Muránsky, and L. Edwards, Residual Stresses 2016: ICRS-10 (Millersville: Materials Research Forum LLC USA, 2017), p. 593.

    Google Scholar 

  31. F.A. Cardoso, M.D. Innocentini, M.F. Miranda, F.A. Valenzuela, and V.C. Pandolfelli, J. Eur. Ceram. Soc. 24, 797 (2004).

    Google Scholar 

  32. I.O. Acuña-Gutiérrez, J.C. Escobedo-Bocardo, J.M. Almanza-Robles, D.A. Cortés-Hernández, M.M.G. Saldívar-Ramírez, P.J. Reséndiz-Hernández, and A. Zugasti-Cruz, Mater. Res. 18, 298 (2015).

    Google Scholar 

  33. A.W. Johnson, Invitation to Organic Chemistry (Burlington: Jones and Bartlett, 1999), p. 372.

    Google Scholar 

  34. S. Maitra, S. Bose, N. Bandyopadhyay, and A. Roychoudhury, Ceram. Int. 31, 371 (2005).

    Google Scholar 

  35. Å. Bengtsson, A. Shchukarev, P. Persson, and S. Sjöberg, Geochim. Cosmochim. Acta 73, 257 (2009).

    Google Scholar 

  36. A. Hidalgo Lopez, J.L. García Calvo, J. García Olmo, S. Petit, and M.C. Alonso, J. Am. Ceram. Soc. 91, 1258 (2008).

    Google Scholar 

  37. T. Sugama, Adv. Cem. Res. 18, 47 (2006).

    Google Scholar 

  38. I. Hung, W.-J. Shih, M.-H. Hon, and M.-C. Wang, Int. J. Mol. Sci. 13, 13569 (2012).

    Google Scholar 

  39. T. Sugama, L.E. Brothers, and T.R.V. de Putte, Cem. Concr. Res. 27, 758 (2005).

    Google Scholar 

  40. P. Feng, M. Niu, C. Gao, S. Peng, and C. Shuai, Sci. Rep. 4, 5599 (2014).

    Google Scholar 

  41. I.R. Oliveira, T.L. Andrade, R.M. Parreira, M. Jacobovitz, and V.C. Pandolfelli, Mater. Res. 18, 382 (2015).

    Google Scholar 

  42. T. Kokubo and H. Takadama, Biomaterials 27, 2907 (2006).

    Google Scholar 

  43. T. Sugama and N.R. Carciello, Cem. Concr. Res. 22, 783 (1991).

    Google Scholar 

  44. R.M. Khashaba, M.M. Moussa, D.J. Mettenburg, F.A. Rueggeberg, N.B. Chutkan, and J.L. Borke, Int. J. Biomater. (2010). https://doi.org/10.1155/2010/691452

    Article  Google Scholar 

  45. D. Meng, L. Dong, Y. Yuan, and Q. Jiang, Regen. Biomater. 6, 13 (2019).

    Google Scholar 

  46. J.A. Domingues, M. Motisuke, C.A. Bertran, M.A. Hausen, E.A.d.R. Duek, and J.A. Camilli, Sci. World J. (2017). https://doi.org/10.1155/2017/5260106

    Article  Google Scholar 

  47. C. Rossa Jr, E. Marcantonio Jr, L.A. Santos, A.O. Boschi, and M.S.G. Raddi, Artif. Organs 29, 114 (2005).

    Google Scholar 

  48. C. Huck, H.D. Barud, F.G. Basso, C.A. Costa, J. Hebling, and L.D. Garcia, Braz. Dent. J. 28, 57 (2017).

    Google Scholar 

  49. Y.V. Solovev, A.Y. Prilepskii, E.F. Krivoshapkina, A.F. Fakhardo, E.A. Bryushkova, P.A. Kalikina, E.I. Koshel, and V.V. Vinogradov, Sci. Rep. 9, 1176 (2019).

    Google Scholar 

  50. Y. Amini, B. Moradi, and M. Fasihi-Ramandi, Artif. Cells Nanomed. Biotechnol. 45, 1331 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajar Ghanbari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 319 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodarzi, R., Ghanbari, H. & Sarpoolaky, H. Phase and Microstructural Evolution of Calcium Aluminum Phosphate Cement for Potential Biological Applications: Effect of Aluminum Hydroxide Sources. JOM 72, 3672–3682 (2020). https://doi.org/10.1007/s11837-020-04299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04299-x

Navigation