Skip to main content
Log in

Method for Evaluating Irradiation Effects on Flow Stress in Fe-9%Cr ODS Using TEM In Situ Cantilevers

  • In-Situ Characterization Techniques for Investigating Nuclear Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Transmission electron microscopic (TEM) in situ mechanical testing has become a widely utilized tool for simultaneously measuring mechanical properties and understanding fundamental deformation mechanisms in irradiated and nuclear materials. Although tensile and compression specimen geometries are among the most common, opportunities remain for investigating alternative geometries that could provide unique insights into the plasticity of irradiated materials. This work demonstrates a new TEM in situ cantilever beam configuration. Cantilevers are produced from as-received and proton-irradiated (1 dpa, 500°C) Fe-9%Cr oxide dispersion-strengthened steel. Flow stress is measured using a TEM in situ depth-sensing mechanical testing holder. A 200-MPa increase in flow stress is measured due to irradiation. Size effects arise when the intrinsic (i.e., microstructural) size approaches the extrinsic (i.e., external dimensions) size and can be described using a power law relationship as a function of the material microstructure and cantilever dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Kiener, P. Hosemann, S.A. Maloy, and A.M. Minor, Nat. Mater. 10, 608 (2011).

    Google Scholar 

  2. K.H. Yano, M.J. Swenson, Y. Wu, and J.P. Wharry, J. Nucl. Mater. 483, 107 (2017).

    Google Scholar 

  3. K.H. Yano, S. Thomas, M.J. Swenson, Y. Lu, and J.P. Wharry, J. Nucl. Mater. 502, 201 (2018).

    Google Scholar 

  4. H.J. Qu, K.H. Yano, P.V. Patki, M.J. Swenson, and J.P. Wharry, J. Mater. Res. 1 (2019).

  5. G.S. Jawaharram, P.M. Price, C.M. Barr, K. Hattar, R.S. Averback, and S.J. Dillon, Scr. Mater. 148, 1 (2018).

    Google Scholar 

  6. S. Mao, S. Özerinç, W.P. King, R.S. Averback, and S.J. Dillon, Scr. Mater. 90, 29 (2014).

    Google Scholar 

  7. M. Jin, A.M. Minor, E.A. Stach, and J.W. Morris, Acta Mater. 52, 5381 (2004).

    Google Scholar 

  8. Q. Yu, R.K. Mishra, and A.M. Minor, JOM 64, 1235 (2012).

    Google Scholar 

  9. J.T.M. De Hosson, Microsc. Res. Tech. 72, 250 (2009).

    Google Scholar 

  10. X.L. Wu, Y.Z. Guo, Q. Wei, and W.H. Wang, Acta Mater. 57, 3562 (2009).

    Google Scholar 

  11. P.J. Imrich, C. Kirchlechner, D. Kiener, and G. Dehm, JOM 67, 1704 (2015).

    Google Scholar 

  12. Z. Shan, JOM 64, 1229 (2012).

    Google Scholar 

  13. J.R. Greer and J.T.M. De Hosson, Prog. Mater Sci. 56, 654 (2011).

    Google Scholar 

  14. E. Arzt, Acta Mater. 46, 5611 (1998).

    Google Scholar 

  15. J.P. Wharry, K.H. Yano, and P.V. Patki, Scr. Mater. 162, 63 (2019).

    Google Scholar 

  16. G. Dehm, B.N. Jaya, R. Raghavan, and C. Kirchlechner, Acta Mater. 142, 248 (2017).

    Google Scholar 

  17. B. Girault, A.S. Schneider, C.P. Prick, and E. Arzt, Adv. Eng. Mater. 12, 385 (2010).

    Google Scholar 

  18. P. Hosemann, C. Shin, and D. Kiener, J. Mater. Res. 30, 1231 (2015).

    Google Scholar 

  19. C. Chisholm, Quantitative In Situ TEM Studies of Small-Scale Plasticity in Irradiated and Unirradiated Metals (Berkeley: University of California, 2015).

    Google Scholar 

  20. M.S. Ding, L. Tian, W.Z. Han, J. Li, E. Ma, and Z.W. Shan, Phys. Rev. Lett. 117, 1 (2016).

    Google Scholar 

  21. D.C. Bufford, C.M. Barr, B. Wang, K. Hattar, and A. Haque, JOM 71, 3350 (2019).

    Google Scholar 

  22. W.Z. Han, M.S. Ding, and Z.W. Shan, Scr. Mater. 147, 1 (2018).

    Google Scholar 

  23. S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, and T. Narita, Mater. Trans. 46, 487 (2005).

    Google Scholar 

  24. M.J. Swenson and J.P. Wharry, J. Nucl. Mater. 467, 97 (2015).

    Google Scholar 

  25. J.F. Ziegler, Stopping Range of Ions in Matter (2013).

  26. M.J. Swenson and J.P. Wharry, J. Nucl. Mater. 496, 24 (2017).

    Google Scholar 

  27. C.M. Parish, K.G. Field, A.G. Certain, and J.P. Wharry, J. Mater. Res. 30, 1275 (2015).

    Google Scholar 

  28. S.J. Zinkle and L.L. Snead, Scr. Mater. 143, 154 (2018).

    Google Scholar 

  29. R.D. Carter, D.L. Damcott, M. Atzmon, G.S. Was, and E.A. Kenik, J. Nucl. Mater. 205, 361 (1993).

    Google Scholar 

  30. D.E.J. Armstrong, A.J. Wilkinson, and S.G. Roberts, J. Mater. Res. 24, 3268 (2009).

    Google Scholar 

  31. D.E.J. Armstrong, C.D. Hardie, J.S.K.L. Gibson, A.J. Bushby, P.D. Edmondson, and S.G. Roberts, J. Nucl. Mater. 462, 374 (2015).

    Google Scholar 

  32. D. Kiener, P. Kaufmann, and A.M. Minor, Adv. Eng. Mater. 14, 960 (2012).

    Google Scholar 

  33. M.W. Kapp, C. Kirchlechner, R. Pippan, and G. Dehm, J. Mater. Res. 30, 791 (2015).

    Google Scholar 

  34. F. Iqbal, J. Ast, M. Göken, and K. Durst, Acta Mater. 60, 1193 (2012).

    Google Scholar 

  35. M. Meyers and K. Chawla, Mechanical Behavior of Materials (New York: Cambridge University Press, 2009).

    MATH  Google Scholar 

  36. C. Motz, T. Schöberl, and R. Pippan, Acta Mater. 53, 4269 (2005).

    Google Scholar 

  37. J. Gong and A.J. Wilkinson, Acta Mater. 57, 5693 (2009).

    Google Scholar 

  38. E. Tarleton, D.S. Balint, J. Gong, and A.J. Wilkinson, Acta Mater. 88, 271 (2015).

    Google Scholar 

  39. P. Hosemann, C. Vieh, R.R. Greco, S. Kabra, J.A. Valdez, M.J. Cappiello, and S.A. Maloy, J. Nucl. Mater. 389, 239 (2009).

    Google Scholar 

  40. M. Ando, H. Tanigawa, S. Jitsukawa, T. Sawai, Y. Katoh, A. Kohyama, K. Nakamura, and H. Takeuchi, J. Nucl. Mater. 307–311, 260 (2002).

    Google Scholar 

  41. C. Heintze, F. Bergner, and M. Hernández-Mayoral, J. Nucl. Mater. 417, 980 (2011).

    Google Scholar 

  42. R.L. Klueh and D.R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications (AsTM: West Conshohocken, 2001).

    Google Scholar 

  43. A. Chauhan, J. Hoffman, D. Litvinov, and J. Aktaa, Mater. Sci. Eng. A 707, 207 (2017).

    Google Scholar 

  44. H. Tang, K.W. Schwarz, and H.D. Espinosa, Acta Mater. 55, 1607 (2007).

    Google Scholar 

  45. S.W. Lee, S.M. Han, and W.D. Nix, Acta Mater. 57, 4404 (2009).

    Google Scholar 

  46. B.R.S. Rogne and C. Thaulow, Philos. Mag. 95, 1814 (2015).

    Google Scholar 

  47. M.J. Swenson, C.K. Dolph, and J.P. Wharry, J. Nucl. Mater. 479, 426 (2016).

    Google Scholar 

  48. W.D. Nix and H.J. Gao, J. Mech. Phys. Solids 46, 411 (1998).

    Google Scholar 

  49. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix, Science 305, 986 (2004).

    Google Scholar 

  50. W.D.J. Callister and D.G. Rethswich, Materials Science and Engineering, 9th ed. (Hoboken: Wiley, 2014).

    Google Scholar 

  51. A.S. Schneider, B.G. Clark, C.P. Frick, P.A. Gruber, and E. Arzt, Mater. Sci. Eng. A 508, 241 (2009).

    Google Scholar 

  52. D.J. Dunstan and A.J. Bushby, Int. J. Plast. 40, 152 (2013).

    Google Scholar 

  53. B. Ehrler, X.D. Hou, T.T. Zhu, K.M.Y. P’Ng, C.J. Walker, A.J. Bushby, and D.J. Dunstan, Philos. Mag. 88, 3043 (2008).

    Google Scholar 

  54. R. Soler, J.M. Wheeler, H.J. Chang, J. Segurado, J. Michler, J. Llorca, and J.M. Molina-Aldareguia, Acta Mater. 81, 50 (2014).

    Google Scholar 

  55. C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider, and E. Arzt, Mater. Sci. Eng. A 489, 319 (2008).

    Google Scholar 

  56. D.M. Dimiduk, M.D. Uchic, and T.A. Parthasarathy, Acta Mater. 53, 4065 (2005).

    Google Scholar 

  57. P.V. Patki, Microstructure Evolution and TEM In Situ Mechanical Testing of Proton Irradiated Nanocrystalline Copper Tantalum Alloy (West Lafayette: Purdue University, 2018).

    Google Scholar 

Download references

Acknowledgements

This research was sponsored in part by the National Science Foundation CAREER award DMR-17-52636 (JPW), and the US DOE Office of Nuclear Energy project DE-NE0008758 (KHY). Microscopy work was supported by the US DOE Nuclear Science User Facilities experiments 15-540, 16-656, and 18-1168. The authors thank J. Burns and J. Taylor in the Microscopy and Characterization Suite (MaCS) at CAES for their assistance with FIB and TEM, J. Noble from Bruker with the setup and operation of the PI95, and Matthew Swenson at the University of Idaho for many thought-provoking technical discussions. The authors also acknowledge the staff and students at the Michigan Ion Beam Laboratory for their assistance with ion irradiation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Yano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 17142 kb)

Supplementary material 2 (MP4 15123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yano, K.H., Wu, Y.Q. & Wharry, J.P. Method for Evaluating Irradiation Effects on Flow Stress in Fe-9%Cr ODS Using TEM In Situ Cantilevers. JOM 72, 2065–2074 (2020). https://doi.org/10.1007/s11837-020-04110-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04110-x

Navigation