Skip to main content
Log in

Formation of Deformation Bands in Hot-Worked SS 316LN

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The role of parameters such as strain, strain rate, temperature, and nitrogen content in the formation of deformation bands in SS 316LN during hot working is discussed. The study was carried out using two variants of SS 316LN. The effects of deformation parameters on band formation were studied by conducting deformation experiments under compression loading at temperatures of 1123 K to 1473 K and strain rates of 0.01 s−1, 1 s−1, and 10 s−1. It was observed that, for deformation at low temperature and high strain rate, there exists a strain beyond which the localized flow manifests as deformation bands. The intensity of these deformation bands depends on temperature. Their intensity reduces with increase in temperature due to the improved thermal conductivity of the material. High deformation rate and high nitrogen content tend to assist deformation band formation. On the basis of microstructural analysis, a mechanism for deformation band formation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Bhaduri, K. Laha, V. Ganesan, T. Sakthivel, M. Nandagopal, and G.P. Reddy, et al., Int. J. Press. Vessels Pip. 139, 123 (2016).

    Article  Google Scholar 

  2. V. Gavriljuk and H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications (Berlin: Springer, 2013).

    Google Scholar 

  3. M. Mathew, K. Laha, and V. Ganesan, Mater. Sci. Eng. A 535, 76 (2012).

    Article  Google Scholar 

  4. G.P. Reddy, A. Nagesha, R. Sandhya, S. Sankaran, M. Mathew, and K.B.S. Rao, Metall. Mater. Trans. A 46, 695 (2015).

    Article  Google Scholar 

  5. M.N. Babu, G. Sasikala, and K. Sadananda, Metall. Mater. Trans. A, 1 (2019).

  6. A. Poonguzhali, M. Pujar, and U.K. Mudali, J. Mater. Eng. Perform. 22, 1170 (2013).

    Article  Google Scholar 

  7. S. Semiatin and G. Lahoti, Metall. Trans. A 14, 105 (1983).

    Article  Google Scholar 

  8. G. Arunkumar, B. Aashranth, D. Samantaray, U. Borah, S.K. Albert, and A.K. Bhaduri, Trans. Indian Inst. Met. (2019).

  9. S. Semiatin, G. Lahoti, and S. Oh, The occurrence of shear bands in metalworking, in Material Behavior under High Stress and Ultrahigh Loading Rates (Springer, 1983), p. 119.

  10. S. Semiatin and G. Lahoti, Metall. Trans. A 13, 275 (1982).

    Article  Google Scholar 

  11. A. Shahan and A.K. Taheri, Mater. Des. 14, 243 (1993).

    Article  Google Scholar 

  12. S. Walley, Metall. Mater. Trans. A 38, 2629 (2007).

    Article  Google Scholar 

  13. M.E. Backman and S.A. Finnegan, The propagation of adiabatic shear, in Metallurgical Effects at High Strain Rates (Springer, 1973), p. 531.

  14. Q. Xue and G. Gray III, Metall. Mater. Trans. A 37, 2435 (2006).

    Article  Google Scholar 

  15. A. Tiamiyu, A. Odeshi, and J. Szpunar, Mater. Sci. Eng. A 711, 233 (2018).

    Article  Google Scholar 

  16. G. Shen, S. Semiatin, and T. Altan, J. Mater. Process. Technol. 36, 303 (1993).

    Article  Google Scholar 

  17. J. Sun, P. Trimby, F. Yan, X. Liao, N. Tao, and J. Wang, Acta Mater. 79, 47 (2014).

    Article  Google Scholar 

  18. M. Tamizifar, H. Omidvar, S.M.T. Salehi, Z. Salehpour, and O. Khoshkalam, Mater. Sci. Technol. 18, 21 (2002).

    Article  Google Scholar 

  19. H. Zhan, W. Zeng, G. Wang, D. Kent, and M. Dargusch, Mater. Charact. 102, 103 (2015).

    Article  Google Scholar 

  20. B. Huang, X. Miao, X. Luo, Y. Yang, and Y. Zhang, Mater. Charact. (2019).

  21. D.-L. Sang, R.-D. Fu, and Y.-J. Li, Mater. Charact. 122, 154 (2016).

    Article  Google Scholar 

  22. V. Nesterenko, M. Meyers, J. LaSalvia, M. Bondar, Y. Chen, and Y. Lukyanov, Mater. Sci. Eng. A 229, 23 (1997).

    Article  Google Scholar 

  23. B. Dodd and Y. Bai, Adiabatic Shear Localization: Frontiers and Advances (Amsterdam: Elsevier, 2012).

    Google Scholar 

  24. S.L. Semiatin and J.J. Jonas, Am. Soc. Met. 1984, 299 (1984).

    Google Scholar 

  25. D. Samantaray, S. Mandal, and A. Bhaduri, Mater. Des. 32, 2797 (2011).

    Article  Google Scholar 

  26. F. Bachmann, R. Hielscher, and H. Schaeben, Texture analysis with MTEX–free and open source software toolbox, in Solid State Phenomena (Trans Tech Publ, 2010), p. 63.

  27. B. Aashranth, M.A. Davinci, D. Samantaray, U. Borah, and S.K. Albert, Mater. Des. 116, 495 (2017).

    Article  Google Scholar 

  28. J. Jonas, R. Holt, and C. Coleman, Acta Metall. 24, 911 (1976).

    Article  Google Scholar 

  29. S. Semiatin, M. Staker, and J. Jonas, Acta Metall. 32, 1347 (1984).

    Article  Google Scholar 

  30. S. Semiatin and G. Lahoti, Metall. Trans. A 12, 1705 (1981).

    Article  Google Scholar 

  31. S. Kumar, D. Samantaray, B. Aashranth, N. Keskar, M.A. Davinci, and U. Borah, et al., Mater. Sci. Eng. A 743, 148 (2019).

    Article  Google Scholar 

  32. S. Kumar, B. Aashranth, D. Samantaray, M.A. Davinci, U. Borah, and A. Bhaduri, Vacuum 156, 20 (2018).

    Article  Google Scholar 

  33. E. Meza-García, J. Bohlen, S. Yi, D. Letzig, V. Kräusel, and D. Landgrebe, et al., Mater. Today Proc. 2, S19 (2015).

    Article  Google Scholar 

  34. H. McQueen, S. Yue, N. Ryan, and E. Fry, J. Mater. Process. Technol. 53, 293 (1995).

    Article  Google Scholar 

  35. R. Goetz and S. Semiatin, J. Mater. Eng. Perform. 10, 710 (2001).

    Article  Google Scholar 

  36. S. Asgari, E. El-Danaf, E. Shaji, S. Kalidindi, and R. Doherty, Acta Mater. 46, 5795 (1998).

    Article  Google Scholar 

  37. B. Aashranth, D. Samantaray, S. Kumar, A. Dasgupta, U. Borah, and S.K. Albert, et al., J. Mater. Eng. Perform. 26, 3531 (2017).

    Article  Google Scholar 

  38. D. Rittel, J. Phys. D Appl. Phys. 42, 214009 (2009).

    Article  Google Scholar 

  39. D. Rittel, P. Landau, and A. Venkert, Phys. Rev. Lett. 101, 165501 (2008).

    Article  Google Scholar 

  40. D. Samantaray, S. Mandal, M. Jayalakshmi, C. Athreya, A. Bhaduri, and V.S. Sarma, Mater. Sci. Eng. A 598, 368 (2014).

    Article  Google Scholar 

  41. D. Hughes, M. Kassner, M. Stout, and J. Vetrano, JOM 50, 16 (1998).

    Article  Google Scholar 

  42. A.V. Granato and K. Lücke, J. Appl. Phys. 27, 583 (1956).

    Article  Google Scholar 

  43. A. Bommakanti, S. Roy, and S. Suwas, J. Mater. Res. 31, 2804 (2016).

    Article  Google Scholar 

  44. Q. Xue, E. Cerreta, and G. Gray, Acta Mater. 55, 691 (2007).

    Article  Google Scholar 

  45. Q. Xue and G. Gray III, Metall. Mater. Trans. A 37, 2447 (2006).

    Article  Google Scholar 

  46. A. Rollett, F. Humphreys, G.S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena (Amsterdam: Elsevier, 2004).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to S. Amirthapandian, MSG, IGCAR for TEM facilities. The authors would also like to thank V. Ganesan, MMG, IGCAR for invaluable help with EBSD studies. The authors are grateful to UGC-DAE-CSR for providing their experimental facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipti Samantaray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Aashranth, B., Davinci, M.A. et al. Formation of Deformation Bands in Hot-Worked SS 316LN. JOM 72, 1395–1405 (2020). https://doi.org/10.1007/s11837-020-04029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04029-3

Navigation