Skip to main content
Log in

Properties and High-Temperature Wear Behavior of Remelted NiCrBSi Coatings

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Remelted NiCrBSi coatings were examined using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction analysis, microhardness and wear testing. After wear tests, the surfaces of the worn samples were examined by 3D profilometry and scanning electron microscopy to investigate the effects of load and temperature on the coefficient of friction and wear resistance. In all the wear experiments, there was a momentary increase in the wear volume and a momentary decrease in the average coefficient of friction values at the elevated test temperatures. This behavior was caused by the stable oxide layer formed on the surface as a consequence of the elevated test temperature. Three dominant wear mechanisms were observed with the NiCrBSi coatings: delamination at room temperature, spalling and adhesion at 250°C, and oxidation at 450°C, whereas in the uncoated samples there was delamination at room temperature, and micro-cracking and oxidation, both at 250°C and 450°C. Remelted NiCrBSi coatings provided better wear resistance and lower coefficient of friction than uncoated STKM-13A steel, especially at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.L. Roberts, Hot rolling of steel (New York: Marcel Dekker, 1983), pp. 1–3.

    Book  Google Scholar 

  2. R. Colás, J. Ramírez, I. Sandoval, J.C. Morales, and L.A. Leduc, Wear (1999). https://doi.org/10.1016/S0043-1648(99)00081-2.

    Article  Google Scholar 

  3. C. Ould, X. Badiche, P. Montmitonnet, and Y. Gachon, Wear (2013). https://doi.org/10.1016/j.wear.2013.07.007.

    Article  Google Scholar 

  4. J.D.B. De Mello, J.L. Gonçalves, and H.L. Costa, Wear (2013). https://doi.org/10.1016/j.wear.2013.02.006.

    Article  Google Scholar 

  5. C. Ould, Y. Gachon, P. Montmitonnet, and X. Badiche, in 14th International Conference on Material Forming Esaform, Proceedings, Book Series: AIP Conference Proceedings, (2011). https://doi.org/10.1063/1.3589768.

  6. A. Günen, E. Kanca, M.S. Karakaş, V. Koç, M.S. Gök, A. Çürük, and M. Demir, Application of different coating methods to external cooling roller and characterization of applied coatings. in 3rd Iron and Steel Symposium (UDCS’17), (2017), ISBN 978-605-9554-0-60.

  7. V. Mayor, Applying traction coating to steel mill rolls, thermal spray: practical solutions for engineering problems. in 9th National Thermal Spray Conference & Exposition, (1996) pp. 61–64.

  8. C. Ould, X. Badiche, P. Montmitonnet, and Y. Gachon, J. Manuf. Process. (2013). https://doi.org/10.1016/j.jmapro.2012.09.011.

    Article  Google Scholar 

  9. A. Ray, K.S. Arora, S. Lester, and M. Shome, J. Mater. Process. Technol. (2014). https://doi.org/10.1016/j.jmatprotec.2014.02.027.

    Article  Google Scholar 

  10. G. Walmag and G. Esser, Work roll manufactured by laser cladding and method therefor, Patent, PCT/EP2015/073189, WO2016055545 A1 (2016).

  11. S. Abraham, J.T. Ok, and K.H. Kim, J. Mater. Process. Technol. (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.091.

    Article  Google Scholar 

  12. H. Liang, F. Ma, X. Wang, T. Zhang, H. Zhu, X. Wu, and H. Zhang, Surf. Coat. Technol. (2000). https://doi.org/10.1016/S0257-8972(00)00625-3.

    Article  Google Scholar 

  13. S. Matthews and B. James, J. Therm. Spray Technol. (2010). https://doi.org/10.1007/s11666-010-9518-8.

    Article  Google Scholar 

  14. R. González, M.A. García, I. Peñuelas, M. Cadenas, M.D.R. Fernández, A.H. Battez, and D. Felgueroso, Wear (2007). https://doi.org/10.1016/j.wear.2007.01.094.

    Article  Google Scholar 

  15. X.C. Zhang, B.S. Xu, S.T. Tu, F.Z. Xuan, Y.K. Zhang, H.D. Wang, and Y.X. Wu, Fatigue Fract. Eng. Mater. (2009). https://doi.org/10.1111/j.1460-2695.2008.01305.x.

    Article  Google Scholar 

  16. J.R. Davis, Handbook of Thermal Spray Technology (Materials Park, OH: ASM International, 2004), pp. 41–82.

    Google Scholar 

  17. R.C. Tucker, eds., Thermal Spray Technology, Vol. 5A (Materials Park: ASM Handbook, 2013), pp. 75–125.

    Google Scholar 

  18. T. Gómez-del Río, M.A. Garrido, J.E. Fernández, M. Cadenas, and J. Rodríguez, J. Mater. Process. Technol. (2008). https://doi.org/10.1016/j.jmatprotec.2007.11.042.

    Article  Google Scholar 

  19. M.A. Garrido, A. Rico, M.T. Gómez, M. Cadenas, J.E. Fernández-Rico, and J. Rodríguez, J. Therm. Spray Technol. (2017). https://doi.org/10.1007/s11666-016-0521-6.

    Article  Google Scholar 

  20. B. Liang, Z. Zhang, and H. Guo, Trans. Indian Inst. Met. (2017). https://doi.org/10.1007/s12666-016-1014-5.

    Article  Google Scholar 

  21. J. Rodríguez, A. Martín, R. Fernández, and J.E. Fernández, Wear (2003). https://doi.org/10.1016/S0043-1648(03)00162-5.

    Article  Google Scholar 

  22. R. González, M. Cadenas, R. Fernández, J.L. Cortizo, and E. Rodríguez, Wear (2007). https://doi.org/10.1016/j.wear.2006.05.009.

    Article  Google Scholar 

  23. Š. Houdková, E. Smazalová, M. Vostřák, and J. Schubert, Surf. Coat. Technol. (2014). https://doi.org/10.1016/j.surfcoat.2014.05.009.

    Article  Google Scholar 

  24. J.M. Miguel, J.M. Guilemany, and S. Vizcaino, Tribol. Int. (2003). https://doi.org/10.1016/S0301-679X(02)00144-5.

    Article  Google Scholar 

  25. Z. Bergant and J. Grum, J. Therm. Spray Technol. (2009). https://doi.org/10.1007/s11666-009-9304-7.

    Article  Google Scholar 

  26. M.R. Karimi, H.R. Salimijazi, and M.A. Golozar, Surf. Eng. (2016). https://doi.org/10.1179/1743294415Y.0000000107.

    Article  Google Scholar 

  27. K. Simunovic, L. Slokar, and S. Havrlisan, Philos. Mag. (2017). https://doi.org/10.1080/14786435.2016.1257167.

    Article  Google Scholar 

  28. E.E. Kornienko, A.A. Nikulina, N.S. Belousova, D.V. Lazurenko, A.S. Ivashutenko, and V.I. Kuz’min, in IOP Conference Series: Materials Science and Engineering (2016). https://doi.org/10.1088/1757-899X/156/1/012020.

    Article  Google Scholar 

  29. D. Chaliampalias, G. Vourlias, E. Pavlidou, S. Skolianos, K. Chrissafis, and G. Stergioudis, Appl. Surf. Sci. (2009). https://doi.org/10.1016/j.apsusc.2008.10.006.

    Article  Google Scholar 

  30. A. Martín, J. Rodríguez, J.E. Fernández, and R. Vijande, Wear (2001). https://doi.org/10.1016/S0043-1648(01)00703-7.

    Article  Google Scholar 

  31. K. Dejun and Z. Benguo, Surf. Rev. Lett. (2017). https://doi.org/10.1142/S0218625X17500573.

    Article  Google Scholar 

  32. C. Guo, J. Zhou, J. Chen, J. Zhao, Y. Yu, and H. Zhou, Wear (2011). https://doi.org/10.1016/j.wear.2011.01.003.

    Article  Google Scholar 

  33. A. Günen, E. Kanca, M.S. Karakaş, V. Koç, M.S. Gök, Y. Kanca, A. Çürük, and M. Demir, Surf Coat. Technol. (2018). https://doi.org/10.1016/j.surfcoat.2018.04.071.

    Article  Google Scholar 

  34. A. Günen, B. Kurt, P. Milner, and M.S. Gök, Int. J. Refract. Met. Hard (2019). https://doi.org/10.1016/j.ijrmhm.2019.03.019.

    Article  Google Scholar 

  35. J.R. Jiang, F.H. Stott, and M.M. Stack, Wear (1995). https://doi.org/10.1016/0043-1648(95)90004-7.

    Article  Google Scholar 

  36. P.W. Stott, A.C. Williams, and B.W. Barry, J. Control. Release (1998). https://doi.org/10.1016/S0168-3659(97)00153-3.

    Article  Google Scholar 

  37. L.C. Betancourt-Dougherty and R.W. Smith, Wear (1998). https://doi.org/10.1016/S0043-1648(97)00212-3.

    Article  Google Scholar 

  38. R. Tyagi, D. Xionga, and J. Li, Wear (2011). https://doi.org/10.1016/j.wear.2010.08.013.

    Article  Google Scholar 

  39. J.F. Archard, J. Appl. Phys. (1953). https://doi.org/10.1063/1.1721448.

    Article  Google Scholar 

  40. M. Woydt and K.H. Habig, Tribol. Int. (1989). https://doi.org/10.1016/0301-679X(89)90168-0.

    Article  Google Scholar 

  41. H. Engqvist, H. Högberg, G.A. Botton, S. Ederyd, and N. Axén, Wear (2000). https://doi.org/10.1016/S0043-1648(00)00315-X.

    Article  Google Scholar 

  42. N.P. Suh, Wear (1973). https://doi.org/10.1016/0043-1648(73)90125-7.

    Article  Google Scholar 

  43. K. Kato, Tribol. Int. (1997). https://doi.org/10.1016/S0301-679X(96)00063-1.

    Article  Google Scholar 

  44. H.A. Sodano, J.M. Lloyd, and D.J. Inman, Adv Mater Res-Switz. (2006). https://doi.org/10.1088/0964-1726/15/5/007.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Turgut Halamoğlu for the sharing his knowledge on flame spray coating and externally cooled rolls.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Günen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günen, A., Çürük, A. Properties and High-Temperature Wear Behavior of Remelted NiCrBSi Coatings. JOM 72, 673–683 (2020). https://doi.org/10.1007/s11837-019-03950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03950-6

Navigation