Skip to main content
Log in

A Forward Modeling Approach to High-Reliability Grain Mapping by Laboratory Diffraction Contrast Tomography (LabDCT)

  • Multiscale Computational Strategies for Heterogeneous Materials with Defects: Coupling Modeling with Experiments and Uncertainty Quantification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Laboratory diffraction contrast tomography (LabDCT) is a laboratory-scale x-ray microtomography technique that can be used to non-destructively map grains and grain boundaries in 3D. The fidelity of grain mapping significantly depends on the quality of grain reflections obtained from the illuminated volume of the specimen. In this article, we report the application of a novel forward modeling approach to improve the reliability of grain mapping. Through this approach, a comparison between the obtained grain reflections and simulated grain reflections can be used to perform a self-fitting operation. This can be used to optimize instrumental parameters and iteratively improve the quality of reconstruction. To demonstrate the effectiveness of the forward modeling approach, LabDCT was used to map the grains in a polycrystalline specimen of the magnesium alloy AZ91E and iteratively improve reconstruction quality significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.P. Hirth, Metall. Trans. 3, 3047 (1972).

    Article  Google Scholar 

  2. R. Smoluchowski, Phys. Rev. 87, 482 (1952).

    Article  Google Scholar 

  3. H. Gleiter, Proceedings of the Second Rise International Symposium on Metallurgy and Materials Science, ed. N. Hansen et al. (Roskilde, 1981), p. 15.

  4. C.L. Briant, Mater. Sci. Technol. 17, 1317 (2001).

    Article  Google Scholar 

  5. B.C.P. Forsyth, R. King, and G. Metcalfe, Nat. Publ. Gr. 158, 875 (1946).

    Article  Google Scholar 

  6. V. Randle, Mater. Sci. Technol. 26, 253 (2010).

    Article  Google Scholar 

  7. T. Watanabe and S. Tsurekawa, J. Mater. Sci. 40, 817 (2005).

    Article  Google Scholar 

  8. T. Watanabe, S. Tsurekawa, X. Zhao, and L. Zuo, Microstructure and Texture in Steels and Other Materials (London: Springer, 2009), pp. 43–82.

    Book  Google Scholar 

  9. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 3rd ed. (Boca Raton: CRC Press, 1992), pp. 310–319.

    Book  Google Scholar 

  10. R. Keinan, H. Bale, N. Gueninchault, E.M. Lauridsen, and A.J. Shahani, Acta Mater. 148, 225 (2018).

    Article  Google Scholar 

  11. T. Buonassisi, A.A. Istratov, M.D. Pickett, M.A. Marcus, T.F. Ciszek, and E.R. Weber, Appl. Phys. Lett. 89, 044107 (2006).

    Article  Google Scholar 

  12. V.K. Gupta and S.R. Agnew, Int. J. Fatigue 33, 1159 (2011).

    Article  Google Scholar 

  13. L.H. Chan, H. Weiland, S. Cheong, G.S. Rohrer, and A.D. Rollett, Appl. Texture Anal. 201, 261 (2008).

    Article  Google Scholar 

  14. S. Rahimi, D.L. Engelberg, J.A. Duff, and T.J. Marrow, J. Microsc. 233, 423 (2008).

    Article  Google Scholar 

  15. Y. Ma, X. Zhou, W. Huang, G.E. Thompson, X. Zhang, C. Luo, and Z. Sun, Mater. Chem. Phys. 161, 201 (2015).

    Article  Google Scholar 

  16. S. Pawar, T.J.A. Slater, T.L. Burnett, Z. Zhou, G.M. Scamans, Z. Fan, G.E. Thompson, and P.J. Withers, Acta Mater. 133, 90 (2017).

    Article  Google Scholar 

  17. C. Cheung and U. Erb, J. Mater. Sci. Eng. A 185, 39 (1994).

    Article  Google Scholar 

  18. S. Kobayashi, M. Hirata, S. Tsurekawa, and T. Watanabe, Procedia Eng. 10, 112 (2011).

    Article  Google Scholar 

  19. J.C.E. Mertens, N. Chawla, Quantifying Electromigration Processes in Sn-0.7Cu Solder with Lab-Scale X-Ray Computed Micro-Tomography. Thesis Ph.D., Arizona State University, 2015.

  20. F.J. Humphreys, J. Mater. Sci. 36, 3833 (2001).

    Article  Google Scholar 

  21. S.I. Wright, M.M. Nowell, and D.P. Field, Microsc. Microanal. 17, 316 (2011).

    Article  Google Scholar 

  22. F. Han, B. Tang, H. Kou, J. Li, and Y. Feng, Mater. Sci. Eng. A 625, 28 (2015).

    Article  Google Scholar 

  23. E. Merson, R. Brydson, and A. Brown, J. Phys. Conf. Ser. 126, 012020 (2008).

    Article  Google Scholar 

  24. A.J. Wilkinson and T.B. Britton, Mater. Today 15, 366 (2012).

    Article  Google Scholar 

  25. S.I. Wright and M.M. Nowell, Electron Backscatter Diffraction in Materials Science (New York: Springer, 2009), pp. 329–337.

    Book  Google Scholar 

  26. M.D. Uchic, Computational Methods for Microstructure–Property Relationships (New York: Springer, 2011), pp. 31–53.

    Book  Google Scholar 

  27. R.S. Sidhu and N. Chawla, Mater. Charact. 52, 225 (2004).

    Article  Google Scholar 

  28. E.R.J.A. Hunt and P. Prasad, Serial-section Polishing Tomography (Berlin: Springer, 2008).

    Book  Google Scholar 

  29. T.L. Burnett, R. Kelley, B. Winiarski, L. Contreras, M. Daly, A. Gholinia, M.G. Burke, and P.J. Withers, Ultramicroscopy 161, 119 (2016).

    Article  Google Scholar 

  30. P.G. Kotula, G.S. Rohrer, and M.P. Marsh, MRS Bull. 39, 361 (2014).

    Article  Google Scholar 

  31. Q. Zhang, S. Niverty, A.S.S. Singaravelu, J.J. Williams, E. Guo, T. Jing, and N. Chawla, Mater. Charact. 148, 52 (2019).

    Article  Google Scholar 

  32. J.C.E. Mertens, A. Kirubanandham, and N. Chawla, Acta Mater. 102, 220 (2016).

    Article  Google Scholar 

  33. R. Vallabhaneni, T. Stannard, C.S. Kaira, and N. Chawla, Corros. Sci. 139, 97 (2018).

    Article  Google Scholar 

  34. S.S. Singh, C. Schwartzstein, J.J. Williams, X. Xiao, F. De Carlo, and N. Chawla, J. Alloys Compd. 602, 163 (2014).

    Article  Google Scholar 

  35. S.S. Singh, J.J. Williams, M.F. Lin, X. Xiao, F. De Carlo, and N. Chawla, Mater. Res. Lett. 2, 217 (2014).

    Article  Google Scholar 

  36. S.S. Singh, J.J. Williams, P. Hruby, X. Xiao, F. De Carlo, and N. Chawla, Integr. Mater. Manuf. Innov. 3, 9 (2014).

    Article  Google Scholar 

  37. S.S. Singh, J.J. Williams, T.J. Stannard, X. Xiao, F. De Carlo, and N. Chawla, Corros. Sci. 104, 330 (2016).

    Article  Google Scholar 

  38. J.J. Williams, K.E. Yazzie, E. Padilla, N. Chawla, X. Xiao, and F. De Carlo, Int. J. Fatigue 57, 79 (2013).

    Article  Google Scholar 

  39. F. Eckermann, T. Suter, P.J. Uggowitzer, A. Afseth, A.J. Davenport, B.J. Connolly, M.H. Larsen, F.D. Carlo, and P. Schmutz, Corros. Sci. 50, 3455 (2008).

    Article  Google Scholar 

  40. T.J. Stannard, J.J. Williams, S.S. Singh, A.S. Sundaram Singaravelu, X. Xiao, and N. Chawla, Corros. Sci. 138, 340 (2018).

    Article  Google Scholar 

  41. A. King, W. Ludwig, M. Herbig, J.Y. Buffiere, A.A. Khan, N. Stevens, and T.J. Marrow, Acta Mater. 59, 6761 (2011).

    Article  Google Scholar 

  42. W. Ludwig, A. King, P. Reischig, M. Herbig, E.M. Lauridsen, S. Schmidt, M. Proudhon, S. Forest, P. Cloetens, S. Rolland du Roscoat, J.Y. Buffiere, T.J. Marrow, and H.F. Poulsen, Mater. Sci. Eng. A 524, 69 (2009).

    Article  Google Scholar 

  43. M. Herbig, A. King, P. Reischig, H. Proudhon, E.M. Lauridsen, J. Marrow, J.Y. Buffiere, and W. Ludwig, Acta Mater. 59, 590 (2011).

    Article  Google Scholar 

  44. V.K. Gupta, R.P. Gangloff, and S.R. Agnew, Int. J. Fatigue 42, 131 (2012).

    Article  Google Scholar 

  45. S.A. McDonald, P. Reischig, C. Holzner, E.M. Lauridsen, P.J. Withers, A.P. Merkle, and M. Feser, Nat. Sci. Rep. 5, 14665 (2015).

    Article  Google Scholar 

  46. C. Holzner, L. Lavery, H. Bale, A. Merkle, S. McDonald, P. Withers, Y. Zhang, D.J. Jensen, M. Kimura, A. Lyckegaard, P. Reischig, and E.M. Lauridsen, Microsc. Today 24, 34 (2016).

    Article  Google Scholar 

  47. H. Kong, H.C. Akakin, and S.E. Sarma, IEEE Trans. Cybern. 43, 1719 (2013).

    Article  Google Scholar 

  48. G.E. Sotak and K.L. Boyer, Comput. Vis. Gr. Image Process. 48, 147 (1989).

    Article  Google Scholar 

  49. H. Spont and J. Cardelino, Image Process. Line 5, 90 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

SN, JJW and NC are grateful for financial support from the Office of Naval Research (ONR) through Contracts N00014-10-1-0350 and N00014-16-1-2174 (Dr. W. Mullins and W Nickerson, Program Managers). We gratefully acknowledge the use of facilities within the Center for 4D Materials Science (4DMS) at Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhilesh Chawla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niverty, S., Sun, J., Williams, J. et al. A Forward Modeling Approach to High-Reliability Grain Mapping by Laboratory Diffraction Contrast Tomography (LabDCT). JOM 71, 2695–2704 (2019). https://doi.org/10.1007/s11837-019-03538-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03538-0

Navigation