Skip to main content
Log in

Study on the Activity of Aeolian Sand Powder and Alkali Excitation Modification

  • Effective Production and Recycling of Powder Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Aeolian sand powder samples were made from aeolian sand which was obtained from the Kubuqi Desert of Inner Mongolia, China. With the method of boiling, the effects of different mass fraction sodium sulfate and sodium hydroxide on the dissolution of active substances of aeolian sand powder were studied. Meanwhile, based on the “alkali activation” theory, the type of activator, the quality fraction and the pre-curing temperature were shown to be variable, and the effect of aeolian sand powder modification is discussed through the test of the strength of aeolian sand powder–cement mortar. Micro-methods such as the total spectral semi-quantitative analysis, x-ray diffraction, field emission scanning electron microscopy, and nuclear magnetic resonance technology were used to study the mineral composition, microstructure and pore characteristics, and then to discuss the feasibility of aeolian sand powder as an alkali-activated material. The results showed that sodium sulfate had a better activation effect on the aeolian sand powder compared with that of sodium hydroxide. The activation rate of aeolian sand powder increases with the increase of the mass fraction of the activator, and, with the increase of the alkalinity of the solution, the dissolution of SiO2 and other active substances in the aeolian sand powder increases gradually. The effect of sodium sulfate on the aeolian sand powder is better than that of sodium hydroxide, and when the mass fraction of sodium sulfate is 2%, the volume of the aeolian sand powder is 15%. When the pre-curing temperature is 35°C, the modification effect of aeolian sand powder is better and the activity index reaches 108.2%. Under the effects of the sodium sulfate, 2.2% and 2.6% active SiO2 and CaO were, respectively, dissolved from the aeolian sand powder. Then, a polymerization reaction occurred under the combined action of the temperature, which generated the needle-shaped hydration product ettringite with a good development state. Meanwhile, the ratio of the inner 20-nm hole of the aeolian sand powder–cement mortar specimen reached 85.69%, and there were many disconnected capillary pores, the irreducible fluid saturation was as high as 94.311%, and the gelling property was good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Li, X. Shen, and J. Wu, Bull. Chin. Ceram. Soc. 04, 1213 (2016).

    Google Scholar 

  2. J. Hu, Z. Hong, H. Zhang, X. Yan, and L. Li, J. Traffic Transp. Eng. 17, 36 (2017).

    Google Scholar 

  3. M. Sheng, Z. Qian, and X. Lu, Chin. J. Geotech. Eng. 12, 2261 (2017).

    Google Scholar 

  4. Z. Qian, X. Lu, and S. Ding, Rock Soil Mech. 34, 1097 (2013).

    Google Scholar 

  5. X. Lu, S. Ding, W. Yang, and W. Zheng, J. Water Resour. Archit. Eng. 05, 20 (2017).

    Google Scholar 

  6. Z. Chen and W. Li, J. Chang’an Univ. (Nat. Sci. Edn.) 01, 1 (2007).

    Google Scholar 

  7. S. Lopez-Querol, J. Arias-Trujillo, M.G.M. Elipe, A. Matias-Sanchez, and B. Cantero, Constr. Build. Mater. 153, 374 (2017).

    Article  Google Scholar 

  8. L. Yan, W. Yu, D. Hu, and W. Liu, Rock Soil Mech. 146, 1 (2018).

    Google Scholar 

  9. J. Wu and X. Shen, Trans. Chin. Soc. Agric. Eng. 10, 184 (2017).

    Google Scholar 

  10. H. Xue, X. Shen, R. Wang, Q. Liu, Z. Liu, C. Han, and Q. Yuan, Trans. Chin. Soc. Agric. Eng. 18, 118 (2017).

    Google Scholar 

  11. N. Yang, J Chin. Ceram. Soc. 02, 209 (1996).

    Google Scholar 

  12. S. Zhou and M. Zhang, Introduction of Powder Engineering (Beijing: Science Press, 2010), pp. 1–222.

    Google Scholar 

  13. C. Xue, A. Shen, Y. Guo, C. Wan, and X. Zhao, Mater. Rev. 10, 130 (2016).

    Google Scholar 

  14. V.M. Kryachek, D.A. Levina, and L.I. Chernyshev, Powder Metall. Met. Ceram. 46, 608 (2007).

    Article  Google Scholar 

  15. W.J. Haws, J. Miner. Met. Mater. Soc. 52, 35 (2000).

    Article  Google Scholar 

  16. RMd Raihanuzzaman, Z. Xie, S.J. Hong, and R. Ghomashchi, Powder Technol. 261, 1 (2014).

    Article  Google Scholar 

  17. A.O. Purdon, J. Soc. Chem. Ind. 59, 191 (1940).

    Article  Google Scholar 

  18. A. Palomo, M.W. Grutzek, and M.T. Blanco, Cem. Concr. Res. 29, 1323 (1999).

    Article  Google Scholar 

  19. Pacheco-Torgal Fernando, Castro-Gomes João, and Said Jalali, Construct. Build. Mater. 7, 1315 (2018).

    Google Scholar 

  20. J. Davidovits, J. Therm. Anal. 37, 163 (1991).

    Article  Google Scholar 

  21. Kaushik Sankar, Am. Ceram. Soc. Bull. 6, 56 (2017).

    Google Scholar 

  22. M. Albitar, M.S. MohamedAli, P. Visintin, and M. Drechsler, Construct. Build. Mater. 136, 374 (2017).

    Article  Google Scholar 

  23. C. Shi, F. He, A. Fernández-Jiménez, V. Pavel Krivenko, and A. Palomo, J. Chin. Ceram. Soc. 01, 69 (2012).

    Google Scholar 

  24. C. Li, T. Zhang, and L. Wang, J. Chin. Ceram. Soc. 08, 1090 (2015).

    Google Scholar 

  25. J. Dong, T. Zhang, and L. Wang, Acta Mater. Compos. Sin. 01, 132 (2016).

    Google Scholar 

  26. H. Wu, Y. Du, F. Wang, D. Mei, and Y. Feng, J. Southeast Univ. (Nat. Sci. Edn.) S1, 25 (2016).

    Google Scholar 

  27. C. Huang, X. Shi, J. Gong, and S. Chen, Chin. J. Environ. Eng. 03, 1851 (2017).

    Google Scholar 

  28. G. Zhu, C. Wang, and G. Li, J. Chin. Ceram. Soc. 09, 1175 (2013).

    Google Scholar 

  29. J. Wang, L. Zhang, X. Feng, S. Zhao, and H. Wang, Chin. J. Rock Mech. Eng. S2, 4418 (2015).

    Google Scholar 

  30. C. Shi, P. Klivenko, and D. Roy, Alkali-activated Cements and Concretes, 1st ed. (Beijing: Chemical Industry Press, 2008), pp. 1–344.

    Google Scholar 

  31. J. Davidovits, in Proceedings of 2005 Geopolymer Conference, vol. 1 (2005), p. 9.

  32. ASTM. ASTM C-125 standard terminology relating to concrete and concrete aggregates. US: ASTM (2007).

  33. Susumu Nakayama and Taro Asahi, J. Ceram. Soc. Jpn. 11, 1188 (2016).

    Article  Google Scholar 

  34. S. Wansom, S. Janjaturaphan, and S. Sinthupinyo, J. Met. Mater. Miner. 2, 1 (2009).

    Google Scholar 

  35. E. Villar-Cociña, E.V. Morales, and S.F. Santos, Cem. Concr. Compos. 1, 68 (2011).

    Article  Google Scholar 

  36. B. Samet, T. Mnif, and M. Chaabouni, Cem. Concr. Compos. 29, 741 (2007).

    Article  Google Scholar 

  37. M. Frías, E. Villar-Cociña, and E. Valencia-Morales, Waste Manag. 27, 533 (2007).

    Article  Google Scholar 

  38. H. Yoda, Y. Aikawa, and E. Sakai, J. Ceram. Soc. Jpn. 125, 130 (2017).

    Article  Google Scholar 

  39. Denis Damidot and Christine Lors, J. Chin. Ceram. Soc. 10, 1324 (2015).

    Google Scholar 

  40. Q. Wang, M. Li, and M. Shi, J. Chin. Ceram. Soc. 05, 629 (2014).

    Google Scholar 

  41. Q. Wang and P. Yan, J. Chin. Ceram. Soc. 10, 1406 (2008).

    Google Scholar 

  42. P. Wang, P. Zhao, and X. Liu, J. Build. Mater. 04, 692 (2015).

    Google Scholar 

  43. Y. Chen, X. Lu, and G. Liu, J. Southeast Univ. (Nat. Sci. Edn.) 02, 328 (2014).

    Google Scholar 

  44. X. Kang, D. Lu, and Z. Xu, J. Chin. Ceram. Soc. 08, 1091 (2016).

    Google Scholar 

  45. W. Liu, X. Li, and D.D. Sun, Nuclear Magnetic Resonance Logging (Beijing: Petroleum Industry Press, 2011), pp. 1–133.

    Google Scholar 

  46. Z. Wu and H. Lian, High Performance Concrete (Beijing: China Railway Press, 1999), pp. 50–200.

    Google Scholar 

  47. P. Tyrologou, A.W.L. Dudeney, and C.A. Grattoni, Waste Resour. Manag. 6, 765 (2005).

    Google Scholar 

  48. F.J. de Cano-Barrita, F. Castellanos, S. Ramírez-Arellanes, M.F. Cosmes-López, L.R. Reyes-Estevez, S.E. Hernández-Arrazola, and A.E. Ramírez-Ortíz, ACI Mater. J. 1, 147 (2015).

    Google Scholar 

  49. A.-M. She, W. Yao, W.-C. Yuan, and J. Cent, South Univ. 20, 1109 (2013).

    Article  Google Scholar 

  50. H. Tian, C. Wei, H. Wei, R. Yan, and P. Chen, Appl. Magn. Reson. 45, 49 (2014).

    Article  Google Scholar 

  51. W. Dong, X. Shen, H. Xue, J. He, and Y. Liu, Constr. Build. Mater. 1, 792 (2016).

    Article  Google Scholar 

Download references

Funding

Fund Program: National Natural Science Foundation of China (51769025, 51569021); The Doctorial Innovation Fund of the Inner Mongolia Autonomous Region (B20171012918).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangDong Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Shen, X., Yuan, Q. et al. Study on the Activity of Aeolian Sand Powder and Alkali Excitation Modification. JOM 71, 984–994 (2019). https://doi.org/10.1007/s11837-018-3163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3163-y

Navigation