Skip to main content
Log in

Numerical Investigation of Inclusion Motion at Molten Steel–Liquid Slag Interface During Ruhrstahl Heraeus (RH) Process

  • Multiphase Flows in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A CFD and inclusion at interface (IAT) coupled model was built and applied to simulate the floating, collision, and removal of inclusion during the Ruhrstahl Heraeus (RH) process. In the model, the influence of fluid flow, the interfacial properties, the wettability, and the viscosity of each phase are considered. The results show that during the RH process, the inclusion size tends to increase via collisions driven by the flow and buoyancy. The volume fraction of inclusion at certain aggregation points even reaches 10−4 magnitude. The different results of the model with and without the IAT boundary condition (BC) were compared, showing that with IAT BC, more inclusions are blocked by the steel–slag interface, especially the ones with a smaller size. The optimization of the bottom gas blowing rate shows that an excessively small or large blowing rate is hazardous for the inclusion removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Zhang and W. Pluschkell, Ironmak. Steelmak. 30, 106 (2003).

    Article  Google Scholar 

  2. J. Zhang and H. Lee, ISIJ Int. 44, 1629 (2004).

    Article  Google Scholar 

  3. L. Zhang, JOM 65, 1138 (2013).

    Article  Google Scholar 

  4. Y. Miki and B.G. Thomas, Metall. Mater. Trans. B 30B, 639 (1999).

    Article  Google Scholar 

  5. S. Kimura, Y. Nabeshima, K. Nakajima, and S. Mizoguchi, Metall. Mater. Trans. B 31B, 1013 (2000).

    Article  Google Scholar 

  6. K. Nakajima, K. Okamura, in 4th International Conference on Molten Slags and Fluxes, Sendai, Japan (ISIJ, Tokyo Japan, 1992), pp. 505–510

  7. G.N. Shannon and S. Sridhar, High Temp. Mat. Pr.-ISR 24, 111 (2005).

    Google Scholar 

  8. S. Yang, W. Liu, and J. Li, JOM 67, 2993 (2015).

    Article  Google Scholar 

  9. S. Yang, J. Li, C. Liu, L. Sun, and H. Yang, Metall. Mater. Trans. B 45B, 2453 (2014).

    Article  Google Scholar 

  10. C. Liu, S. Yang, J. Li, L. Zhu, and X. Li, Metall. Mater. Trans. B 47B, 1882 (2016).

    Article  Google Scholar 

  11. S. Sridhar and A.W. Cramb, Metall. Mater. Trans. B 31B, 406 (2000).

    Article  Google Scholar 

  12. J. Park, I. Jung, and H. Lee, ISIJ Int. 46, 1626 (2006).

    Article  Google Scholar 

  13. B.J. Monaghan, L. Chen, and J. Non-Cryst, Solids 347, 254 (2004).

    Google Scholar 

  14. W. Lou and M. Zhu, Metall. Mater. Trans. B 44B, 762 (2013).

    Article  Google Scholar 

  15. D. Bouris and G. Bergeles, Metall. Mater. Trans. B 29B, 641 (1998).

    Article  Google Scholar 

  16. J. Strandh, K. Nakajima, R. Eriksson, and P. Jonsson, ISIJ Int. 45, 1838 (2005).

    Article  Google Scholar 

  17. J. Strandh, K. Nakajima, R. Eriksson, and P. Jonsson, ISIJ Int. 45, 1597 (2005).

    Article  Google Scholar 

  18. H. Lei, L. Wang, Z. Wu, and J. Fan, ISIJ Int. 42, 717 (2002).

    Article  Google Scholar 

  19. H. Tozawa, Y. Kato, K. Sorimachi, and T. Nakanishi, ISIJ Int. 39, 426 (1999).

    Article  Google Scholar 

  20. D. Geng, J. Zheng, K. Wang, P. Wang, R. Liang, H. Liu, H. Lei, and J. He, Metall. Mater. Trans. B 46B, 1484 (2015).

    Article  Google Scholar 

  21. L.T. Wang, Q.Y. Zhang, S.H. Peng, and Z.B. Li, ISIJ Int. 45, 331 (2005).

    Article  Google Scholar 

  22. M. Zhu, S. Zheng, Z. Huang, and W. Gu, Steel Res. Int. 76, 718 (2005).

    Article  Google Scholar 

  23. Y. Hu, W. Chen, H. Han, and R. Bai, Metall. Res. Technol. 114, 109 (2017).

    Article  Google Scholar 

  24. H. Ling, L. Zhang, and C. Liu, Metall. Res. Technol. 114, 510 (2017).

    Article  Google Scholar 

  25. H. Ling, F. Li, L. Zhang, and A.N. Conejo, Metall. Mater. Trans. B 47B, 1950 (2016).

    Article  Google Scholar 

  26. K. Chattopadhyay, M. Isac, and R.I.L. Guthrie, Steel Res. Int. 82, 1287 (2011).

    Article  Google Scholar 

  27. Ansys, Ansys Fluent 16.0 Theory Guide (Canonsburg: ANSYS, Inc. v.16.0, 2015).

    Google Scholar 

  28. S.K. Ajmani, S.K. Dash, S. Chandra, and C. Bhanu, ISIJ Int. 44, 82 (2004).

    Article  Google Scholar 

  29. T. Kuwabara, K. Umezawa, K. Mori, and H. Watanabe, Trans. Iron Steel Inst. Jpn. 28, 305 (1988).

    Article  Google Scholar 

  30. M. Van Ende, Y. Kim, M. Cho, J. Choi, and I. Jung, Metall. Mater. Trans. B 42B, 477 (2011).

    Article  Google Scholar 

  31. M.J. Hounslow, R.L. Ryall, and V.R. Marshall, AIChE J. 34, 1821 (1988).

    Article  Google Scholar 

Download references

Acknowledgement

This research is supported by the National Science Foundation of China (No. 51574020 and 51674023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufeng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Yang, S., Li, J. et al. Numerical Investigation of Inclusion Motion at Molten Steel–Liquid Slag Interface During Ruhrstahl Heraeus (RH) Process. JOM 70, 2877–2885 (2018). https://doi.org/10.1007/s11837-018-3115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3115-6

Navigation