Skip to main content
Log in

Processing of a Green Fiber-Reinforced Composite of High-Performance Curaua Fiber in Polyester

  • Characterization of Green Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Lignocellulosic fibers extracted from the curaua plant are among the strongest natural fibers used as polymer composite reinforcements for engineering applications. However, to date, such composites have been limited in terms of their mechanical strength and impact energy. The objective of the present work is to investigate the possibility of improving the tensile strength as well as impact energy of curaua fiber-reinforced polyester composites by varying the process parameters, i.e., the amount of fibers with thinner diameter and the pressure applied during composite preparation. Using 60 vol.% of thinner, continuous, and aligned curaua fibers, it was possible to obtain tensile strength above 200 MPa. Moreover, by applying pressure of 30 MPa during curing, composites with tensile strength above 270 MPa were obtained. Regarding the Izod impact resistance, toughness of over 340 J/m was obtained for notched specimens machined perpendicular to the fiber alignment direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.N. Monteiro, F.P.D. Lopes, A.P. Barbosa, A.B. Bevitori, I.L.A. da Silva, and L.L. da Costa, Metall. Mater. Trans. A 42, 2963 (2011).

    Article  Google Scholar 

  2. A.K. Mohanty, M. Misra, and G. Hinrichsen, Macromol. Mater. Eng. 276, 1 (2000).

    Article  Google Scholar 

  3. S.J. Eichhorn, C.A. Baillie, N. Zafeiropoulos, L.Y. Mwaikambo, M.P. Ansell, A. Dufresne, K.M. Entwistle, P.J. Herrera-Franco, G.C. Escamilla, L. Groom, M. Hughes, C. Hill, T.G. Rials, and P.M. Wild, J. Mater. Sci. 36, 2107 (2001).

    Article  Google Scholar 

  4. A.K. Mohanty, M. Misra, and L.T. Drzal, J. Polym. Environ. 10, 19 (2002).

    Article  Google Scholar 

  5. A.N. Netravali and S. Chabba, Mater. Today 6, 22 (2003).

    Article  Google Scholar 

  6. J. Crocker, Mater. Technol. 2–3, 174 (2008).

    Article  Google Scholar 

  7. S.N. Monteiro, F.P.D. Lopes, A.S. Ferreira, and D.C.O. Nascimento, JOM 61, 17 (2009).

    Article  Google Scholar 

  8. M.J. John and S. Thomas, Carbohydr. Polym. 71, 343 (2008).

    Article  Google Scholar 

  9. V.K. Thakur, A.S. Singha, and M.K. Thakur, J. Polym. Environ. 20, 412–421 (2012).

    Article  Google Scholar 

  10. O. Faruk, A.K. Bledzki, H.P. Fink, and M. Sain, Prog. Polym. Sci. 37, 1555 (2012).

    Article  Google Scholar 

  11. V.K. Thakur, A.S. Singha, and M.K. Thakur, Int. J. Polym. Mater. 62, 226–230 (2013).

    Article  Google Scholar 

  12. V.K. Thakur, M.K. Thakur, and R.K. Gupta, Intl. J. Polym. Anal. Charact. 19, 256 (2014).

    Article  Google Scholar 

  13. O. Güven, S.N. Monteiro, E.A.B. Moura, and J.W. Drelich, Polym. Rev. 56, 702 (2016).

    Article  Google Scholar 

  14. K.L. Pickering, M.G.A. Efendy, and T.M. Le, Compos. Part A 83, 98 (2016).

    Article  Google Scholar 

  15. J. Wróblewska-Krepsztul, T. Rydzkowski, G. Borowski, M. Szczypiński, T. Klepka, and V.K. Thakur, Int. J. Polym. Anal. Charact. 23, 383–395 (2018).

    Article  Google Scholar 

  16. S.P. Dubey, V.K. Thakur, S. Krishnaswamy, H.A. Abhyankar, V. Marchante, and J.L. Brighton, Vacuum 146, 655–663 (2017).

    Article  Google Scholar 

  17. J. Holbery and D. Houston, JOM 58, 80 (2006).

    Article  Google Scholar 

  18. R. Zah, R. Hischier, A.L. Leão, and I. Braun, J. Clean. Prod. 15, 1032 (2007).

    Article  Google Scholar 

  19. N. Thomas, S.A. Paul, L.A. Pothan, and B. Deepa, Natural fibers: structure, properties and application.Cellulose Fibers: Bio- and Nano-polymer Composites, ed. S. Kalia, B.S. Kaith, and I. Kaur (Berlin-Heidelberg: Springer, 2011), p. 3.

    Chapter  Google Scholar 

  20. Z. Benzait and L. Trabzon, J. Compos. Mater. (2018). https://doi.org/10.1177/0021998318764002.

    Article  Google Scholar 

  21. P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol. 63, 1259 (2003).

    Article  Google Scholar 

  22. S.V. Joshi, L.T. Drzal, A.K. Mohanty, and S. Arora, Compos. Part A 35, 371 (2004).

    Article  Google Scholar 

  23. F. Tomczak, K.G. Satyanarayana, and T.H.D. Sydenstricker, Compos. Part A 38, 2227 (2007).

    Article  Google Scholar 

  24. M.A.S. Spinacé, C.S. Lambert, K.K.G. Fermoselli, and M. De Paoli, Carbohydr. Polym. 77, 47 (2009).

    Article  Google Scholar 

  25. K.G. Satyanarayana, J.L. Guimarães, and F. Wypych, Compos. Part A 38, 1694 (2007).

    Article  Google Scholar 

  26. F.H. Oliveira, A.L. Helfer, and S.C. Amico, Macromol. Symp. 319, 83 (2012).

    Article  Google Scholar 

  27. J.H. Almeida Jr, H.L. Ornaghi Jr, S.C. Amico, and F.D.R. Amado, Mater. Des. 42, 111 (2012).

    Article  Google Scholar 

  28. D.O. Castro, A. Ruvolo Filho, and E. Frollini, Polym. Test. 31, 880 (2012).

    Article  Google Scholar 

  29. C.C. Angrizani, M.O.H. Cioffi, A.J. Zatteri, and S.C. Amico, J. Reinf. Plast. Compos. 33, 472 (2014).

    Article  Google Scholar 

  30. S.N. Monteiro, F.O. Braga, E.P. Lima Jr, L.H.L. Louro, and J.W. Drelich, Polym. Eng. Sci. 57, 947 (2017).

    Article  Google Scholar 

  31. M.Z. Rong, M.Q. Zhang, Y. Liu, G.C. Yang, and H.M. Zeng, Compos. Sci. Technol. 61, 1437 (2001).

    Article  Google Scholar 

  32. S.N. Monteiro, K.G. Satyanarayana, A.S. Ferreira, D.C.O. Nascimento, F.P.D. Lopes, and I.L.A. Silva, Materia 15, 488 (2010).

    Google Scholar 

  33. ASTM Designation D638, Standard Method for Tensile Properties of Plastics, West Conshohocken (2015).

  34. ASTM Designation D256, Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. West Conshohocken (2015).

  35. F.O. Braga, N.T. Simonassi, A.C. Cabral, S.N. Monteiro, and F.S. Assis, Tensile and impact properties of two fiber configurations for curaua reinforced composites. Proceedings of the 3rd Panamerican Materials Congress, ed. M.A. Meyers, et al. (San Diego: The Minerals, Metals and Materials Society, 2017), p. 429.

    Chapter  Google Scholar 

  36. A.L. Leão, I.H. Tan, and J.C. Caraschi, Curaua fiber—a tropical natural fiber from Amazon—potential and applications in composites, in Proceedings of the International Conference on Advanced Composites (Hurghada, Egypt: Yasser G. & Faissal, 1998), p. 557.

  37. S.N. Monteiro, L.L. Da Costa, F.P.D. Lopes, and L.A.H. Terrones, Characterization of the impact resistance of coir fiber reinforced polyester composites, in TMS 2008 Annual Meeting Supplemental: Materials Processing and Properties (New Orleans, USA, 2008), vol. 2, p. 131.

  38. K.K. Chawla, Composite Materials Science and Engineering, 3rd ed. (New York: Springer, 2012).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support of this investigation by the Brazilian agencies CNPq, CAPES, and FAPERJ, and LNDC/UFRJ for performing the tensile tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noan Tonini Simonassi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonassi, N.T., Braga, F.O. & Monteiro, S.N. Processing of a Green Fiber-Reinforced Composite of High-Performance Curaua Fiber in Polyester. JOM 70, 1958–1964 (2018). https://doi.org/10.1007/s11837-018-3074-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3074-y

Navigation