Skip to main content
Log in

Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel

  • Data-driven Material Investigations: Understanding Fatigue Behavior
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Gross, The History of Theoretical, Material and Computational Mechanics—Mathematics Meets Mechanics and Engineering (Berlin: Springer, 2014).

    Google Scholar 

  2. F. Braithwaite, Proc. Inst. Civ. Eng. Constr. Mater. (2015). https://doi.org/10.1680/imotp.1854.23960.

    Google Scholar 

  3. J.C. Humfrey and J.A. Ewing, Philos. Trans. R. Soc. Lond. Ser. A 200, 241–250 (1903).

    Article  Google Scholar 

  4. F. Li, Z. Liu, W. Wu, Q. Zhao, Y. Zhou, S. Bai, X. Wang, and G. Fan, Int. J. Fatigue (2016). https://doi.org/10.1016/j.ijfatigue.2016.05.014.

    Google Scholar 

  5. N.L. Phung, V. Favier, N. Ranc, F. Valès, and H. Mughrabi, Int. J. Fatigue (2014). https://doi.org/10.1016/j.ijfatigue.2014.01.007.

    Google Scholar 

  6. W. Tong, L. Hector, H. Weiland, and L. Wieserman, Scr. Mater. (1997). https://doi.org/10.1016/s1359-6462(97)00024-9.

    Google Scholar 

  7. M. Stoudt, L. Levine, A. Creuzigera, and J. Hubbard, Mater. Sci. Eng. A (2011). https://doi.org/10.1016/j.msea.2011.09.050.

    Google Scholar 

  8. Y. Kaneko, M. Ishikawa, and S. Hashimoto, Mater. Sci. Eng. A (2005). https://doi.org/10.1016/j.msea.2005.02.080.

    Google Scholar 

  9. H. Huang and N. Ho, Mater. Sci. Eng. (2000). https://doi.org/10.1016/S0921-5093(99)00634-6.

    Google Scholar 

  10. A. Ugˇuz and J. Martin, Mater. Charact. (1996). https://doi.org/10.1016/S1044-5803(96)00074-5.

    Google Scholar 

  11. S. Ye, J. Gong, S. Tu, X. Zhang, and C. Zhang, Fatigue Fract. Eng. Mater. Struct. (2017). https://doi.org/10.1111/ffe.12559.

    Google Scholar 

  12. A. Vladimirov, I. Kamantsev, V. Veselova, E. Gorkunov, and S. Gladkovskii, J. Tech. Phys. (Wars. Pol.) (2016). https://doi.org/10.1134/S106378421604023X.

    Google Scholar 

  13. J. Bär and S. Seifert, Proc. Mater. Sci. (2014). https://doi.org/10.1016/j.mspro.2014.06.068.

    Google Scholar 

  14. L. Xiao, D. Ye, C. Chen, J. Liu, and L. Zhang, Int. J. Mech. Sci. (2014). https://doi.org/10.1016/j.ijmecsci.2013.11.001.

    Google Scholar 

  15. S. Suresh and A. Giannakopoulos, Acta Mater. (1998). https://doi.org/10.1016/S1359-6454(98)00226-2.

    Google Scholar 

  16. Y. Wang, E. Meletis, and H. Huang, Int. J. Fatigue (2013). https://doi.org/10.1016/j.ijfatigue.2012.11.009.

    Google Scholar 

  17. L. Muravsky, P. Picart, A. Kmet’, T. Voronyak, O. Ostash, and I. Stasyshyn, Opt. Eng. (2016). https://doi.org/10.1117/1.oe.55.10.104108.

    Google Scholar 

  18. S. Leutenegger, M. Chli, and R. Siegwart, in International Conference on Computer Vision (2011). https://doi.org/10.1109/iccv.2011.6126542.

  19. H. Bay, T. Tuytelaars, and L. Gool, Comput. Vis. ECCV (2006). https://doi.org/10.1007/11744023_3.

    Google Scholar 

  20. C. Pelloux and R. Bathias, Metall. Trans. (1973). https://doi.org/10.1007/BF02644521.

    Google Scholar 

  21. J. Toribio, V. Kharin, and J. Toribio, et al., Frattura ed Integrità Strutturale (2013). https://doi.org/10.3221/IGF-ESIS.25.18.

    Google Scholar 

  22. M. Clavel, D. Fournier, and A. Pineau, Metall. Trans. A 6A, 105 (1975).

    Google Scholar 

  23. S. Suresh, Fatigue of Materials (Cambridge: Cambridge University Press, 1998).

    Book  Google Scholar 

Download references

Acknowledgements

This work has been funded by Air Force Office of Scientific Research (AFOSR) Grant FA9550-14-1-0319.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall Kelton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelton, R., Sola, J.F., Meletis, E.I. et al. Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel. JOM 70, 1175–1181 (2018). https://doi.org/10.1007/s11837-018-2865-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2865-5

Navigation