Skip to main content
Log in

Microstructure-Based Counterfeit Detection in Metal Part Manufacturing

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Counterfeiting in metal part manufacturing has become a major global concern. Although significant effort has been made in detecting the implementation of such counterfeits, modern approaches suffer from high expense during production, invasiveness during manufacture, and unreliability in practice if parts are damaged during use. In this paper, a practical microstructure-based counterfeit detection methodology is proposed, which draws on inherent randomness present in the microstructure as a result of the manufacturing process. An optical Physically Unclonable Function (PUF) protocol is developed which takes a micrograph as input and outputs a compact, unique string representation of the micrograph. The uniqueness of the outputs and their robustness to moderate wear and tear is demonstrated by application of the methodology to brass samples. The protocol is shown to have good discriminatory power even between samples manufactured in the same batch, and runs on the order of several seconds per part on inexpensive machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Tuyls, J. Guajardo, L. Batina, and T. Kerins, in Security with Noisy Data: On Pri- vate Biometrics, Secure Key Storage and Anti-Counterfeiting, ed. P. Tuyles and T. Kevenaar (London: Springer, 2007), p. 293

    Chapter  Google Scholar 

  2. R. Maes and I. Verbauwhede, in Towards Hardware-Intrinsic Security, ed. A.-R. Sadeghi and D. Naccache (Heidelberg: Springer, 2010), p. 3.

    Chapter  Google Scholar 

  3. A. Mitrokotsa and M. Rieback, Inform. Syst. Front. 12, 491 (2010) doi:10.1007/s10796-009-9210-z.

    Article  Google Scholar 

  4. J. Buchanan, R.P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D.A. Allwood, and M.T. Bryan, Nature, 436, 475 (2005) doi:10.1038/436475a.

    Article  Google Scholar 

  5. G.E. Suh and S. Devadas, Des. Aut. Con. 44, 9 (2007) doi:10.1145/1278480.1278484.

    Google Scholar 

  6. R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, Science, 297, 2026 (2002) doi:10.1126/science.1074376.

    Article  Google Scholar 

  7. P. Tuyls, G.-J. Schrijen, B. Škorić, J. Van Geloven, N, Verhaegh, and B. Wolters, Lect. Notes Comput. Sci. 369 (2006) doi:10.1007/11894063_29

  8. A.-R. Sadeghi, I. Visconti, and C. Wachsmann, in Towards Hardware-Intrinsic Security, ed. A.-R. Sadeghi and D. Naccache (Heidelberg: Springer, 2010), p. 281.

    Chapter  Google Scholar 

  9. P. Tuyls and B. Škorić, in AmIware Hardware Technology Drivers of Ambient Intelligence, ed. S. Mukherjee, E. Aarts, R. Roovers, and F. Widdershoven (Dordrecht: Springer, 2006), p. 421.

    Chapter  Google Scholar 

  10. M. Diephuis, S. Voloshynovskiy, T. Holotyak, N. Stendardo, and B. Keel, in Proceedings of SPIE 90280T (2014) doi:10.1117/12.2039638

  11. J.H. Panchal, S.R. Kalidindi, and D.L. McDowell, Comput. Aided Des. 45, 4 (2013) doi:10.1016/j.cad.2012.06.006.

    Article  Google Scholar 

  12. B.L. Adams, S. Kalidindi, and D.T. Fullwood, in Microstructure Sensitive Design for Performance Optimization (Boston, MA: ButterWorth-Heinemann, 2013), p. 67.

    Google Scholar 

  13. S.R. Niezgoda, Y.C. Yabansu, and S.R. Kalidindi, Acta Mater. 59, 6387 (2011) doi:10.1016/j.actamat.2011.06.051.

    Article  Google Scholar 

  14. W.-H. Tsai, Comput. Gr. Image Process. 29, 377 (1985) doi:10.1016/0734-189X(85)90133-1.

    Article  Google Scholar 

  15. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, Nat. Methods, 9, 676 (2012) doi:10.1038/nmeth.2019.

    Article  Google Scholar 

  16. S. Ghosh and D.M. Dimiduk, Computational Methods for Microstructure-Property Relationships, (New York, NY: Springer, 2011), pp. 99–150.

    Book  Google Scholar 

  17. R.T. DeHoff and F.N. Rhines, Quantitative Microscopy, (New York, NY: Mcgraw-Hill, 1968), p. 128.

    Google Scholar 

  18. S.I. Tomkeieff, Nature, 155, 107 (1945) doi:10.1038/155024a0.

    Google Scholar 

  19. R.W. Hamming, Bell Sys. Tech. J. 29, 147 (1950) doi:10.1002/j.1538-7305.1950.tb00463.x.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Portions of this work were supported by National Science Foundation Grants CPS-1329979, CNS-0915436, CMMI-1265622; and by sponsors of CERIAS. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Dachowicz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 100 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dachowicz, A., Chaduvula, S.C., Atallah, M. et al. Microstructure-Based Counterfeit Detection in Metal Part Manufacturing. JOM 69, 2390–2396 (2017). https://doi.org/10.1007/s11837-017-2502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2502-8

Navigation