Skip to main content

Advertisement

Log in

Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Thonstad, P. Fellner, G.M. Haarberg, J. Híveš, H. Kvande, and A. Sterten, Aluminum Electrolysis, 3rd ed. (Düsseldorf: Aluminium-Verlag Marketing & Kommunikation GmbH, 2001).

    Google Scholar 

  2. L. Yexiang and L. Jie, Modern Aluminum Electrolysis, 1st ed. (Beijing: Metallurgical Indstry Press, 2008).

    Google Scholar 

  3. Q. Zhuxian, Aluminum Manufacturing in Prebake Reduction Cell, 3rd ed. (Beijing: Metallurgical Indstry Press, 2005).

    Google Scholar 

  4. R.A. Mohr, Light Metals, ed. J.E. Andersen (Warrendale: TMS, 1982), pp. 595–608.

    Google Scholar 

  5. Y. Macaudiere, Light Metals, ed. L.G. Boxall (Warrendale: TMS, 1988), pp. 607–612.

    Google Scholar 

  6. C.M. Ritter, L.F.R. Neves, L.V.M. Ivo, and H.H.S. Trigueiro, Light Metals, ed. R.D. Peterson (Warrendale: TMS, 2000), pp. 271–276.

    Google Scholar 

  7. T. Moen, J. Aalbu, and P. Borg, Light Metals, ed. H.O. Bohner (Warrendale: TMS, 1985), pp. 459–469.

    Google Scholar 

  8. P. Borg, T. Moen, and J. Aalbu, Model. Identif. Control 7, 45 (1986).

    Article  Google Scholar 

  9. J.S. McKenna, F.K. Omani, and T. Nyadziehe, JOM 45, 44 (1993).

    Article  Google Scholar 

  10. J.G. Balchen, MIC 13, 41 (1992).

    Article  MathSciNet  Google Scholar 

  11. T. Drengstig, D. Ljungquist, and B.A. Foss, IEEE Trans. Control Syst. 6, 157 (1998).

    Article  Google Scholar 

  12. J. Li, Y.Z. Huang, H.Z. Wang, and Y.X. Liu, Light Metals, ed. U. Mannweiler (Warrendale: TMS, 1994), pp. 441–447.

    Google Scholar 

  13. J. Li, Y.X. Liu, Y.Z. Huang, H.Z. Wang, N. Han, and X.R. Yang, Trans. Nonferrous Met. Soc. 4, 26 (1994).

    Google Scholar 

  14. P. Borg, T. Moen, and J. Aalbu, MIC 7, 45 (1986).

    Article  Google Scholar 

  15. A. Meghlaoui and N. Aljabri, Light Metals, ed. P.N. Crepeau (Warrendale: TMS, 2003), pp. 425–429.

    Google Scholar 

  16. F. Frost and V. Karri, AISTA, ed. M. Mohammadian (Canberra: IOS Press, 2000), pp. 34–39.

    Google Scholar 

  17. F. Frost and V. Karri, IEA/AIE, ed. R. Loganantharaj, G. Palm, and M. Ali (New Orleans: Springer, 2000), pp. 73–78.

    Google Scholar 

  18. L. Tikasz, R.T. Bui, and V. Potocnik, Light Metals, ed. M.B. Christian (Warrendale: TMS, 1990), pp. 197–202.

    Google Scholar 

  19. W.K. Rolland, A. Steinsnes, and A.S. Larsen, Light Metals, ed. E. Rooy (Warrendale: TMS, 1991), pp. 437–443.

    Google Scholar 

  20. L. Tikasz, M. Zaymus, and A. Cseh, Light Metals, ed. L.G. Boxall (Warrendale: TMS, 1988), pp. 583–588.

    Google Scholar 

  21. J. Li, Y.X. Liu, and Y.Z. Huang, Chin. J. Nonferrous Met. 3, 25 (1993).

    Google Scholar 

  22. K.D. Boadu and F.K. Omani, JOM 62, 32 (2010).

    Article  Google Scholar 

  23. B. Sulmont, S. Fardeau, E. Barrioz, and P. Marcellin, Light Metals, ed. T.J. Galloway (San Antonio: TMS, 2006), pp. 325–329.

    Google Scholar 

  24. C. Braga, N.F. Nagem, A. Silva, S. Martin, C.E. Ritter, and M. Verlihay, Light Metals, ed. M. Sorlie (Carlotte: TMS, 2007), pp. 417–422.

    Google Scholar 

  25. M.P. Taylor, Mater. Manuf. Processes 22, 947 (2007).

    Article  Google Scholar 

  26. M.M. Hyland, E.C. Patterson, M.F. Stevens, and B.J. Welch, Scand. J. Metall. 30, 404 (2001).

    Article  Google Scholar 

  27. Y.B. Huang, X.D. Qu, and J.M. Zhou, Trans. Nonferrous Met. Soc. China 19, 724 (2009).

    Article  Google Scholar 

  28. S. Kolås, JOM 59, 55 (2007).

    Article  Google Scholar 

  29. S. Kolås and T. Støre, Control Eng. Pract. 17, 1035 (2009).

    Article  Google Scholar 

  30. T. Drengstig, D. Ljungquist, and B.A. Foss, MIC 19, 31 (1998).

    Article  Google Scholar 

  31. W. Haupin, Light Metals, ed. B. Welch (San Antonio: TMS, 1998), pp. 531–537.

    Google Scholar 

  32. P.M. Entner and G.A. Gudmundsson, Light Metals, ed. W. Hale (Anaheim: TMS, 1996), pp. 445–449.

    Google Scholar 

  33. Y.B. Huang, J. Zhou, X. Qu, and Z. Sun, Control Conference (27th, China, 2008), pp. 99–103 (2008).

  34. X.R. Yang, Y.H. Liu, and J. Cent, South Univ. Technol. 34, 551 (2003).

    Google Scholar 

  35. Y.X. Liu, X.T. Chen, W.G. Zhang, Z. Zou, and J. Li, Com. Eng. Appl. 40, 216 (2004).

    Google Scholar 

  36. N.A.A. Majid, B.R. Young, M.P. Taylor, and J.J. Chen, Light Metals, ed. G. Bearne (San Francisco: TMS, 2009), pp. 589–593.

    Google Scholar 

  37. M.A. Stam, M.P. Taylor, J.J.J. Chen, A. Mulder, and R. Rodrigo, Light Metal, ed. G. Bearne (San Francisco: TMS, 2009), pp. 311–315.

    Google Scholar 

  38. C.E.S. Neto, L.V.M. Ivo, and O.M. Guzzon, Light Metals, ed. H. Kvande (San Francisco: TMS, 2005), pp. 399–405.

    Google Scholar 

  39. S.X. Liu, DMI:Review. 27, 52 (2016).

  40. B.E.I. Jihong and W.A.N.G. Zuojun, Can. Soc. Sci. 11, 13 (2015).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (51574289, 61533020 and 51674300) and the Project of Innovation-driven Plan of Central South University (2015CXS017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, T., Li, J. et al. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant. JOM 69, 292–300 (2017). https://doi.org/10.1007/s11837-016-2150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2150-4

Keywords

Navigation