Skip to main content
Log in

Competitive Current Modes for Tunable Ni-Sn Electrodeposition and Their Lithiation/Delithiation Properties

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Li-ion battery (LIB) anodes with graded composition have the potential to relax interfacial stress and better accommodate the internal stress buildup within the anode during battery operation. A one-dimensional numerical model was developed, where the balance between two competitive current modes (electrokinetic reaction-limited current and diffusion-limited current) defines the deposit composition. The model indicated that the composition of a binary alloy deposit can be varied with overpotential, by decreasing the relative concentration of the more noble element in the plating bath. Indeed, when Ni-Sn alloy was electrodeposited from a Ni2+:Sn2+=50:1 bath, the fraction of Sn in the deposit decreased, from 0.47 to 0.13, with increasing current density. Under this plating condition, Ni-Sn deposits were prepared with uniform, discretized and gradient changes in the deposition current density. Cyclic voltammetry of these samples demonstrated both reversible and irreversible reactions with Li-ion, offering a promising premise for LIB application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci. 4, 3243 (2011).

    Article  Google Scholar 

  2. P.G. Bruce, B. Scrosati, and J.-M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008).

    Article  Google Scholar 

  3. W.J. Zhang, J. Power Sources 196, 13 (2011).

    Article  Google Scholar 

  4. M. Winter and J.O. Besenhard, Electrochim. Acta 45, 31 (1999).

    Article  Google Scholar 

  5. A. Mukhopadhyay and B.W. Sheldon, Prog. Mater Sci. 63, 58 (2014).

    Article  Google Scholar 

  6. M.N. Obrovac and V.L. Chevrier, Chem. Rev. 114, 11444 (2014).

    Article  Google Scholar 

  7. Y. He, J. Fan, and Y. Zhao, Cryst. Growth Des. 10, 4954 (2010).

    Article  Google Scholar 

  8. B.D. Polat, O.L. Eryilmaz, O. Keles, A. Erdemir, and K. Amine, Thin Solid Films 596, 190 (2015).

    Article  Google Scholar 

  9. S.D. Beattie and J.R. Dahn, J. Electrochem. Soc. 150, C457 (2003).

    Article  Google Scholar 

  10. H. Yamashita, T. Yamamura, and K. Yoshimoto, J. Electrochem. Soc. 140, 2238 (1993).

    Article  Google Scholar 

  11. V.D. Jović, U. Lačnjevac, B.M. Jović, L. Karanović, and N.V. Krstajić, Int. J. Hydrogen Energy 37, 17882 (2012).

    Article  Google Scholar 

  12. H. Zhang, T. Shi, D.J. Wetzel, R.G. Nuzzo, and P.V. Braun, Adv. Mater. 28, 742 (2016).

    Article  Google Scholar 

  13. H. Mukaibo, T. Sumi, T. Yokoshima, T. Momma, and T. Osaka, Electrochem. Solid-State Lett. 6, A218 (2003).

    Article  Google Scholar 

  14. J. Hassoun, S. Panero, and B. Scrosati, J. Power Sources 160, 1336 (2006).

    Article  Google Scholar 

  15. M. Paunovic and M. Schlessinger, Fundamentals of Electrochemical Deposition (Hoboken: Wiley, 1998), p. 211.

    Google Scholar 

  16. S. Hessami and C.W. Tobias, J. Electrochem. Soc. 136, 3611 (1989).

    Article  Google Scholar 

  17. B.M. Jović, U.Č. Lačnjevac, V.D. Jović, and N.V. Krstajić, J. Electroanal. Chem. 754, 100 (2015).

    Article  Google Scholar 

  18. Y. Zhu, X. Zhang, J. Song, W. Wang, F. Yue, and Q. Ma, Appl. Catal. A 500, 51 (2015).

    Article  Google Scholar 

  19. H. Jiménez, L. Gil, M.H. Staia, and E.S. Puchi-Cabrera, Surf. Coat. Technol. 202, 2072 (2008).

    Article  Google Scholar 

  20. U. Lačnjevac, B.M. Jović, and V.D. Jović, J. Electrochem. Soc. 159, D310 (2012).

    Article  Google Scholar 

  21. V.D. Jović and N. Tošić, J. Electroanal. Chem. 441, 69 (1998).

    Article  Google Scholar 

  22. J.-T. Li, J. Swiatowska, V. Maurice, A. Seyeux, L. Huang, S.-G. Sun, and P. Marcus, J. Phys. Chem. C 115, 7012 (2011).

    Article  Google Scholar 

  23. H. Mukaibo, T. Momma, M. Mohamedi, and T. Osaka, J. Electrochem. Soc. 152, A560 (2005).

    Article  Google Scholar 

Download references

Acknowledgement

The research has been conducted under the financial support from the Department of Chemical Engineering at the University of Rochester.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitomi Mukaibo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7031 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffman, L.R., Breene, C., Diallo, A. et al. Competitive Current Modes for Tunable Ni-Sn Electrodeposition and Their Lithiation/Delithiation Properties. JOM 68, 2646–2652 (2016). https://doi.org/10.1007/s11837-016-2067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2067-y

Keywords

Navigation