Skip to main content
Log in

Stability of Interfacial Phase Growth in a Slab with Convective Boundary Conditions

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The mass transport and energy equations for a semi-infinite porous slab are solved using similarity variables and closed form functions to describe freezing with remelt at the interface. Heat and mass balance analyses give a transcendental equation for the unknown interfacial freezing velocity for solving on the computer. The solutions for the temperature and mass concentration are decoupled and solved analytically. The solution for convective boundary conditions is compared with that for Dirichlet boundary conditions. The progressive development of the solution with material thickness and change of functional time dependence and effect on the stability of nucleation is outlined. A discussion with biological adaptation to extreme cold and possible evolution of molecules in heat transfer regimes is included in light of the above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a :

Thermal diffusivity in Wolfram

a 0 :

Distance of nearest vacant sites (of order 1 Angstrom)

C Molar:

Concentration of moisture

C i/C 3 :

Nondim concentration

C 3 :

Critical point concentration

Co Molar:

Concentration of bound substance

C p :

Specific heat

C s :

Concentration at x = 0

C om :

Initial molar concentration of moisture (=C0)

D 1, D 2, E 1, E 2 :

Constants of integration

K i :

Effective thermal conductivity in region 1

K ij K i/K j :

Thermal conductivity ratio

l :

Latent heat

L :

Nondim enthalpy (L/RT3)

L diff :

Diffusive length

Q 1 :

Nondimensional latent heat (Stefan constant)

r :

Recondensation factor

R :

Gas constant

S(t):

Position of phase interface

T 0 :

Initial temperature

T i :

Temperature in region i

T s :

Temperature at x = 0

T m :

Temperature at freezing interface

T :

Far field temperature

U :

Transformation variable for decoupling

v :

Velocity

M :

Molecular weight

T, T 3 :

Temperature, critical point temperature

x :

Distance variable

Z :

Nondimensional solution for concentration

θ :

Nondim temperature

Θ :

Temperature in spherical solution

α i :

Effective thermal diffusivity in region i

α mi :

Effective moisture diffusivity

α 12 :

Thermal diffusivity ratio

β, δ 1 :

Decoupling constants

γ :

Surface tension

G :

Free energy

H :

Enthalpy

T :

Undercooling

ε :

Porosity

η :

Similarity variable x/(αt)1/2

λ :

Nondim position of freezing interface

ρ :

Density

ω :

Volume fraction of adsorbed initial moisture

MBP:

Moving boundary problem

Ste:

Stefan Number = sensible heat/latent heat

Bi:

Biot number = hL/k

Nu:

Nusselt number, same functional definition as Biot number

Sta:

Stanton number = h/(ρvc p) = ratio of heat transferred to thermal capacity

\( {\text{erf}}\left( z \right) = \frac{2}{\sqrt \pi }\int\limits_{0}^{x} {e^{{ - \left( {x^{2} } \right)}} } {\text{d}}x \) :

erfc(z) = 1 − erf(z)

References

  1. M.J. Ashwood Smith, Current Trends in Cryobiology, ed. A.U. Smith (New York: Plenum, 1970), p. 5.

    Chapter  Google Scholar 

  2. C.J. Knight, J. Hallett, and A.L. deVries, Cryobiology 25, 55 (1988).

    Article  Google Scholar 

  3. M.G. O’Callaghan, J. Heat Trans. 102, 633 (1980).

    Google Scholar 

  4. W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 34, 323 (1963).

    Article  Google Scholar 

  5. H.S. Uday Kumar and L. Mao, Int. J. Heat Mass Trans. 45, 4793 (2002).

    Article  Google Scholar 

  6. S. Furusako and M. Yamada, Warme und Stoff 24, 203 (1989).

    Article  Google Scholar 

  7. D. Juric and G. Trygvasson, J. Comput. Phys. 123, 127 (1996).

    Article  MathSciNet  Google Scholar 

  8. S.S.L. Peppin, A. Majumdar, and J.S. Wettlafer, Report No. 09/23, OCCAM (Oxford Centre for Collaborative Applied Mathematics), Oxford, Sept 2009.

  9. T. Benjamin, F. Chung, and L.T. Yeh, J. Space Craft Rockets 12, 329 (1975).

    Article  Google Scholar 

  10. J.L. Stephenson, Recent Research in Freezing and Drying, ed. A.S. Parkes and A.U. Smith (Oxford: Blackwell, 1960), p. 121.

    Google Scholar 

  11. R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Vol. 1, 2 (Oxford: Clarendon Press, 1975).

    MATH  Google Scholar 

  12. P.D. Lebedev, Int. J. Heat Mass Trans. 1, 202 (1961).

    Google Scholar 

  13. H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids (Oxford: Clarendon Press, 1959), p. 72.

    MATH  Google Scholar 

  14. R. Basu, Def. Sci. J. 54, 317 (2004).

    Article  Google Scholar 

  15. F.P. Incropera, D.P. Dewitt, T.T.L. Bergman, and A.S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. (New Delhi: Wiley, 2010).

    Google Scholar 

  16. F. Krieth and F.E. Romie, Proc. Phys. Soc. Lond. B 68, 377 (1955).

    Article  Google Scholar 

  17. M. Avrami, J. Chem. Phys. 7, 1103 (1939).

    Article  Google Scholar 

  18. R.J. Kirkpatrick, Am. Miner. 60, 798 (1975).

    Google Scholar 

  19. B. Yang, J. Perepezko, E. Zhuralev, et al., TMS Annual Meeting Suppl Proc. pp. 485–492, (2013).

  20. L.R. Ingersoll, O.J. Zobel, and A.C. Ingersoll, Heat Conduction with Engineering, Geological and Other Applications (Oxford: Oxford IBH, 1969).

    MATH  Google Scholar 

  21. R.R. Joshi, Bull. Math. Biol. 47, 551 (1985).

    Article  Google Scholar 

  22. P.K. Tapaswi and A.K. Saha, Bull. Math. Biol. 48, 213 (1986).

    Article  MathSciNet  Google Scholar 

  23. J. Oró, Nature 190, 389 (1961).

    Article  Google Scholar 

  24. J. Oró and S.S. Kamat, Nature 190, 442 (1961).

    Article  Google Scholar 

  25. J. Oró, A. Kimball, R. Fritz, and F. Master, Arch. Biochem. Biophys. 85, 115 (1959).

    Article  Google Scholar 

  26. J. Oró and A.P. Kimball, Arch. Biochem. Biophys. 94, 217 (1961).

    Article  Google Scholar 

  27. J. Oró, Nature 191, 1193 (1961).

    Article  Google Scholar 

  28. J. Oró, T. Mills, and A. Lazcano, Adv. Space Res. 12, 33 (1992).

    Article  Google Scholar 

  29. J. Oro, Microbiology 8, 63 (2005).

    Google Scholar 

  30. D.W. Deamer, How did it all begin—From Evolution: Investigating the Evidence (Paleontological Society Special Publication Volume 9, 1999) http://www.ucmp.berkeley.edu/education/events/deamer1.html. Accessed 27 Feb 2016.

  31. J.B.S. Haldane, Ration. Annu. 148, 3 (1926).

    Google Scholar 

  32. “Modelling across scales”—A road mapping study for connecting material models and simulations across length and time scales, TMS, 2015.

  33. N.G. Holm and A. Neubach, Geochem. Trans. 10, 9 (2009). doi:10.1186/1467-4866-10-9.

    Article  Google Scholar 

Download references

Acknowledgements

This work started as a doctoral project suggested at NCSU under Prof. Michael Boles. The work on turbulent boundary layers was revived after similarities were observed in the equations and mechanisms. Inspirational discussions with Prof. Donald Coles of Caltech and Prof. Juan Oro of the University of Houston are also remembered and gratefully acknowledged. I am also grateful for meeting Prof. JBS Haldane, FRS, and his wife Dr. Helen Spurway Haldane, FRS, in Bangalore many years ago and having discussions about albino swordtail fish. The movie Forbidden Planet at that time, and the Star Trek series deeply influenced me, and I was an online SETI volunteer for some time. I am grateful to the referees for a critical reading of the manuscript and for pointing out various unclear areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Basu.

Appendices

Appendix 1

$$ \begin{aligned} &\frac{\partial }{\partial t}\left( {erfc\left( {\frac{x}{{2\sqrt {at} }} + h\sqrt {at} } \right)\exp \left( {hx + h^{2} at} \right) - {\text{erfc}}\left( {\frac{x}{{2\sqrt {at} }}} \right)} \right) \hfill \\ &\quad = ah^{2} e^{{ah^{2} t + hx}} {\text{erfc}}\left( {h\sqrt {at} + \frac{x}{{2\sqrt {at} }}} \right) \quad - \frac{{2e^{{ah^{2} t - \left( {h\sqrt {at} + \frac{x}{{2\sqrt {at} }}} \right)^{2} + hx}} \left( {\frac{ah}{{2\sqrt {at} }} - \frac{ax}{{4(at)^{3/2} }}} \right)}}{\sqrt \pi } - \frac{{axe^{{ - \frac{{x^{2} }}{4at}}} }}{{2\sqrt {\pi \left( {at} \right)^{3/2} } }} \hfill \\ \end{aligned} $$
$$ \begin{aligned} &\frac{{\partial^{2} }}{{\partial x^{2} }}\left( {{\text{erfc}}\left( {\frac{x}{{2\sqrt {at} }} + h\sqrt {at} } \right)\exp \left( {hx + h^{2} at} \right) - {\text{erfc}}\left( {\frac{x}{{2\sqrt {at} }}} \right)} \right) \hfill \\ & \quad = h^{2} e^{{ah^{2} t + hx}} {\text{erfc}}\left( {h\sqrt {at} + \frac{x}{{2\sqrt {at} }}} \right) - \frac{{2he^{{ah^{2} t - \left( {h\sqrt {at} + \frac{x}{{2\sqrt {at} }}} \right)^{2} }} + hx}}{{\sqrt \pi \sqrt {at} }} \hfill \\ &\qquad + \,\frac{{e^{{ah^{2} t - \left( {h\sqrt {at} + \frac{x}{{2\sqrt {at} }}} \right)^{2} + hx}} \left( {h\sqrt {at} + \frac{x}{{2\sqrt {at} }}} \right)}}{\sqrt \pi at} - \frac{{xe^{{ - \frac{{x^{2} }}{4at}}} }}{{2\sqrt \pi at\sqrt {at} }} \hfill \\ \end{aligned} $$

Appendix 2

$$ \begin{aligned} &he\frac{{ah^{2} t}}{{k^{2} }}{\text{erfc}}\left( {\frac{{h\sqrt {at} }}{k}} \right) + hx\left( {\frac{{he\frac{{ah^{2} t}}{{k^{2} }}{\text{erfc}}\left( {\frac{{h\sqrt {at} }}{k}} \right)}}{k} - \frac{{\sqrt {at} }}{\sqrt \pi at}} \right) \hfill \\ &\quad +\, hx^{2} \left( {\frac{{h^{2} e\frac{{ah^{2} t}}{{k^{2} }}{\text{erfc}}\left( {\frac{{h\sqrt {at} }}{k}} \right)}}{{2k^{2} }} - \frac{{h\sqrt {at} }}{2\sqrt \pi akt}} \right) + hx^{3} \left( {\frac{{h^{3} e\frac{{ah^{2} t}}{{k^{2} }}{\text{erfc}}\left( {\frac{{h\sqrt {at} }}{k}} \right)}}{{6k^{3} }} - \frac{{\sqrt {at} \left( {\frac{{4ah^{2} t}}{{k^{2} }} - 2} \right)}}{{24\sqrt \pi a^{2} t^{2} }}} \right) \hfill \\ &\quad +\, h^{2} x^{4} \frac{{\left( {2\sqrt \pi a^{2} h^{3} t{}^{2}e\frac{{ah^{2} t}}{{k^{2} }}} \right){\text{erfc}}\left( {\frac{{h\sqrt {at} }}{k}} \right) - 2ah^{2} kt\sqrt {at} + k^{3} \sqrt {at} }}{{48\sqrt \pi a^{2} k^{4} t^{2} }} + O\left( {x^{5} } \right) \hfill \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, R. Stability of Interfacial Phase Growth in a Slab with Convective Boundary Conditions. JOM 68, 1679–1690 (2016). https://doi.org/10.1007/s11837-016-1909-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1909-y

Keywords

Navigation