Skip to main content
Log in

Determination of Coherency and Rigidity Temperatures in Al-Cu Alloys Using In Situ Neutron Diffraction During Casting

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The rigidity temperature of a solidifying alloy is the temperature at which the solid phase is sufficiently coalesced to transmit tensile stress. It is a major input parameter in numerical modeling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. This temperature has been determined for an Al-13 wt.% Cu alloy using in situ neutron diffraction during casting in a dog-bone-shaped mold. This setup allows the sample to build up internal stress naturally as its contraction is not possible. The cooling on both sides of the mold induces a hot spot at the middle of the sample that is irradiated by neutrons. Diffraction patterns are recorded every 11 s using a large detector, and the very first change of diffraction angles allows for the determination of the rigidity temperature. We measured rigidity temperatures equal to 557°C and 548°C depending on the cooling rate for grain refined Al-13 wt.% Cu alloys. At a high cooling rate, rigidity is reached during the formation of the eutectic phase. In this case, the solid phase is not sufficiently coalesced to sustain tensile load and thus cannot avoid hot tear formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.A. Danzig and M. Rappaz, Solidification, Part III, Defects (Lausanne, Switzerland: EPFL Press, 2009).

    Google Scholar 

  2. M. Rappaz, A. Jacot, and W.J. Boettinger, Metall. Mater. Trans. A 34, 467 (2003).

    Article  Google Scholar 

  3. M. Rappaz, J.-M. Drezet, and M. Gremaud, Metall. Mater. Trans. A 30, 449 (1999).

    Article  Google Scholar 

  4. A. Stangeland, A. Mo, M. M’Hamdi, D. Viano, and C. Davidson, Metall. Mater. Trans. A 37, 705 (2006).

    Article  Google Scholar 

  5. S. Terzi, L. Salvo, M. Suery, N. Limodin, J. Adrien, E. Maire, Y. Pannier, M. Bornert, D. Bernard, and M. Felberbaum, Scripta Mater. 61, 449 (2009).

    Article  Google Scholar 

  6. M. Suéry, S. Terzi, B. Mireux, L. Salvo, J. Adrien, and E. Maire, JOM 64, 83 (2012).

    Article  Google Scholar 

  7. A.B. Phillion, R.W. Hamilton, D. Fuloria, A.C.L. Leung, P. Rockett, T. Connolley, and P.D. Lee, Acta Mater. 59, 1436 (2011).

    Article  Google Scholar 

  8. C.M. Gourlay, A.K. Dahle, T. Nagira, N. Nakatsuka, K. Nogita, K. Uesugi, and H. Yasuda, Acta Mater. 59, 4933 (2011).

    Article  Google Scholar 

  9. E. Giraud, M. Suéry, and M. Coret, Metall. Mater. Trans. A 41, 2257 (2010).

    Article  Google Scholar 

  10. A. Fallet, G. Chichignoud, C.L. Martin, M. Suéry, and P. Jarry, Mater. Sci. Eng. A 426, 187 (2006).

    Article  Google Scholar 

  11. J.-M. Drezet, A. Evans, T. Pirling, and B. Pitié, Int. J. Cast Met. 25, 110 (2012).

    Article  Google Scholar 

  12. M. Lalpoor, D.G. Eskin, and L. Katgerman, Metall. Mater. Trans. A 40, 3304 (2009).

    Article  Google Scholar 

  13. J.-M. Drezet and T. Pirling, J. Mater. Process. Technol. 214, 1372 (2014).

    Article  Google Scholar 

  14. T. Pirling, G. Bruno, and P.J. Withers, Mater. Sci. Forum 524–525, 217 (2006).

    Article  Google Scholar 

  15. M. Sistaninia, S. Terzi, A.B. Phillion, J.-M. Drezet, and M. Rappaz, Acta Mater. 61, 3831 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their deep acknowledgements to the Swiss National Science Foundation, Bern, for funding (Project No. 200021_146879) and the International Neutron Source at ILL-Grenoble for the provision of beam time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Drezet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drezet, JM., Mireux, B., Szaraz, Z. et al. Determination of Coherency and Rigidity Temperatures in Al-Cu Alloys Using In Situ Neutron Diffraction During Casting. JOM 66, 1425–1430 (2014). https://doi.org/10.1007/s11837-014-1018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1018-8

Keywords

Navigation