Skip to main content
Log in

Microstructural Analysis of Linear Friction-Welded 718 Plus Superalloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microstructure of Allvac 718 Plus (718 Plus; ATI, Pittsburgh, PA, USA) superalloy was examined after linear friction welding (LFW) and after standard postweld heat treatment (PWHT). The liquid phase reaction of second-phase precipitates, which are known to constitutionally liquate during conventional fusion welding, was observed in the thermomechanically affected zone (TMAZ) of the welded material. These phases included MC-type carbides, Ti-rich carbonitrides, and δ phase precipitates. This observation is contrary to the general assumption that LFW is a completely solid-state joining process. However, unlike conventional fusion welding processes that cause heat-affected zone liquation cracking in 718 Plus and many other superalloys, the LFW process did not cause cracking in 718 Plus superalloy despite the liquation of precipitates. This absence of cracking during joining is attributed to the applied compressive stress during the forging stage of the LFW process. Also, no cracking was observed after PWHT, although PWHT resulted in a microstructure that had a nonhomogeneous distribution of precipitates in the weld and the TMAZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. W.D. Cao and R. Kennedy, Superalloys, ed. K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston (Warrendale, PA: TMS, 2004), pp. 91–99.

    Google Scholar 

  2. K.R. Vishwakarma, N.L. Richards, and M.C. Chaturvedi, Mater. Sci. Eng. A Struct. 480, 517 (2008).

    Article  Google Scholar 

  3. O. Idowu, O.A. Ojo, and M.C. Chaturvedi, Mater. Sci. Eng. A Struct. 454–455, 389 (2006).

    Google Scholar 

  4. A. Varis and M. Frost, Mater. Sci. Eng. A Struct. 292, 8 (2000).

    Article  Google Scholar 

  5. I. Bhamji, M. Preuss, P.L. Threadgill, R.J. Moat, A.C. Addison, and M.J. Peel, Mater. Sci. Eng. A Struct. 528, 680 (2010).

    Article  Google Scholar 

  6. E. Dalgaard, P. Wanjara, J. Gholipour, and J.J. Jonas, Can. Metall. Q. 51, 269 (2012).

    Article  Google Scholar 

  7. E. Dalgaard, P. Wanjara, J. Gholipour, X. Cao, and J.J. Jonas, Acta Mater. 60, 770 (2012).

    Article  Google Scholar 

  8. A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, and S. Yue, Mater. Sci. Eng. A Struct. 555, 117 (2012).

    Google Scholar 

  9. O.T. Ola, O.A. Ojo, P. Wanjara, and M.C. Chaturvedi, Adv. Mater. Res. 278, 446 (2011).

    Article  Google Scholar 

  10. S.V. Lalam, G.M. Reddy, T. Mohandas, M. Kamaraj, and B.S. Murty, Mater. Sci. Tech. Ser. 25, 851 (2009).

    Article  Google Scholar 

  11. P. Wanjara, E. Dalgaard, J. Gholipour, and J. Larose, Mater. Sci. Forum 706–709, 3022 (2012).

    Article  Google Scholar 

  12. A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, and S. Yue, Mater. Des. 36, 113 (2012).

    Article  Google Scholar 

  13. O.T. Ola, O.A. Ojo, P. Wanjara, and M.C. Chaturvedi, Metall. Mater. Trans. A 43A, 921 (2012).

    Article  Google Scholar 

  14. O.T. Ola, O.A. Ojo, P. Wanjara, and M.C. Chaturvedi, Metall. Mater. Trans. A 42A, 3761 (2011).

    Article  Google Scholar 

  15. P. Wanjara and M. Jahazi, Metall. Mater. Trans. A 36A, 2149 (2005).

    Article  Google Scholar 

  16. C. Mary and M. Jahazi, Adv. Mater. Res. 15–17, 357 (2007).

    Article  Google Scholar 

  17. A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, and S. Yue, Metall. Mater. Trans. A 44, 4230 (2013).

    Article  Google Scholar 

  18. O.T. Ola, O.A. Ojo, P. Wanjara, and M.C. Chaturvedi, Philos. Mag. Lett. 91, 140 (2011).

    Article  Google Scholar 

  19. A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, and S. Yue, Metall. Mater. Trans. A 42, 729 (2011).

    Article  Google Scholar 

  20. J.J. Pepe and W.F. Savage, Weld J. 9, 411-s (1967).

    Google Scholar 

  21. R. Nakkalil, N.L. Richards, and M.C. Chaturvedi, Acta Metall. Mater. 41, 3381 (1993).

    Article  Google Scholar 

  22. O.A. Ojo, N.L. Richards, and M.C. Chaturvedi, Scr. Mater. 51, 141 (2004).

    Article  Google Scholar 

  23. B. Radhakrishnan and R.G. Thompson, Metall. Trans. A 20A, 2866 (1989).

    Article  Google Scholar 

  24. B. Radhakrishnan and R.G. Thompson, Metall. Trans. A 23A, 1783 (1992).

    Article  Google Scholar 

  25. J.J. Schirra, R.H. Caless, and R.W. Hatala, Superalloys 718, 625, 706 and Various Derivatives, ed. E.A. Loria (Warrendale, PA: TMS, 1991), pp. 375–388.

    Chapter  Google Scholar 

  26. K.R. Vishwakarma, N.L. Richards, and M.C. Chaturvedi, Superalloys 718, 625, 706 and Various Derivatives, ed. E.A. Loria (Warrendale, PA: TMS, 2006), pp. 637–647.

    Google Scholar 

  27. Q. Li (Ph.D. thesis, University of Manitoba, 2006).

  28. M. Qian and J.C. Lippold, Acta Mater. 51, 3351 (2003).

    Article  Google Scholar 

  29. S. Azadian, L. Wei, and R. Warren, Mater. Charact. 57, 7 (2004).

    Article  Google Scholar 

  30. H.R. Zhang and O.A. Ojo, Philos. Mag. Lett. 89, 787 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Natural Sciences and Engineering Research Council of Canada for the financial support. The technical assistance of M. Guerin and E. Dalgaard for LFW of IN 718 Plus is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Vishwakarma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vishwakarma, K.R., Ojo, O.A., Wanjara, P. et al. Microstructural Analysis of Linear Friction-Welded 718 Plus Superalloy. JOM 66, 2525–2534 (2014). https://doi.org/10.1007/s11837-014-0938-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-0938-7

Keywords

Navigation