Skip to main content
Log in

Hydride Formation in Zirconium Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The ingress of hydrogen during corrosion in service can degrade the mechanical properties of zirconium alloy nuclear fuel cladding because of the formation of brittle hydrides. The formation of these hydrides is reviewed in light of recent synchrotron radiation experimental results and phase-field modeling computational results that provide new insight on the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Lemaignan and A.T. Motta, Materials Science and Technology, A Comprehensive Treatment, vol. 10 B, ed. B.R.T. Frost (New York: VCH, 1994), p. 1.

  2. R. Yang, O. Ozer, and H. Rosenbaum, Light Water Reactor Fuel Performance Meeting, ed. P. Macdonald (Park City, UT: ANS, 2000).

  3. G.P. Sabol, R. Comstock, G. Schoenberger, H. Kunishi, and D.L. Nuhfer, Proceedings of International Topical Meeting on Light Water Reactor Fuel Performance, Portland, OR (1997), p. 397.

  4. A.T. Motta (Paper presented at Materials Research Society Fall Meeting, Symposium T: Materials Innovations for Next-Generation Nuclear Energy, Boston, MA, 2007).

  5. J. Desquines, D.A. Koss, A.T. Motta, B. Cazalis, and M. Petit, J. Nucl. Mater. 412, 250 (2011).

    Article  Google Scholar 

  6. A. McMinn, E.C. Darby, and J.S. Schofield, 12th Int. Symp. on Zr in the Nuclear Industry, vol. STP-1354, ed. G.P. Sabol and J. Moan (Toronto, CA: ASTM, 2000), p. 173.

  7. J.J. Kearns, J. Nucl. Mater. 22, 292 (1967).

    Article  Google Scholar 

  8. M.P. Puls, Acta Metall. 29, 1961 (1981).

    Article  Google Scholar 

  9. K.B. Colas, A.T. Motta, J.D. Almer, M.R. Daymond, M. Kerr, A.D. Banchik, P. Vizcaino, and J.R. Santisteban, Acta Mater. 58, 6575 (2010).

    Article  Google Scholar 

  10. K. Une and S. Ishimoto, J. Nucl. Mater. 322, 66 (2003).

    Article  Google Scholar 

  11. M. Billone, Y. Yan, T. Burtseva, and R. Daum, Cladding Embrittlement During Postulated Loss-of-Coolant Accidents, NRC, Doc.No NUREG/CR-6967 (2008).

  12. D.D. Lanning, C.E. Beyer, and C.L. Painter, U.S. Nuclear Regulatory Commission NUREG CR-6534 (1997).

  13. M.C. Billone, Y. Yan, T. Burtseva, and R.S. Daum, NRC, 2008.

  14. A.M. Garde, G.P. Smith, R.C. Pirek, 11th International Symposium on Zr in the Nuclear Industry, vol. STP 1295, ed. G.P. Sabol ERBa (Garmisch-Partenkirchen, Germany: ASTM, 1996), p. 407.

  15. M.P. Puls, Metall. Trans. A 22A, 2327 (1991).

    Google Scholar 

  16. A. Sawatzky and C.E. Ells, 12th ASTM International Symposium on Zirconium in the Nuclear Industry, Toronto, Canada, STP 1354 (2000), p. 32.

  17. B.A. Cheadle, C.E. Coleman, and J.F. Ambler, 7th International Symposium on Zr in the Nuclear Industry, vol. STP-939 (Philadelphia, PA: ASTM, 1987), p. 224.

  18. M.P. Puls, Metall. Trans. A 19A, 2247 (1988).

    Google Scholar 

  19. L.A. Simpson and C.D. Cann, J. Nucl. Mater. 87, 303 (1979).

    Article  Google Scholar 

  20. L.A. Simpson and M.P. Puls, Metall. Trans. A 10A, 1093 (1979).

    Google Scholar 

  21. D.L. Douglass, The Metallurgy of Zirconium. (Vienna: International Atomic Energy Agency Supplement, 1971).

  22. C.E. Ells, J. Nucl. Mater. 28, 129 (1968).

    Article  Google Scholar 

  23. R.S. Daum, Y.S. Chu, and A.T. Motta, J. Nucl. Mater. 392, 453 (2009).

    Article  Google Scholar 

  24. A. Racine (Ph.D. thesis, L’Ecole Polytechnique, 2005).

  25. H.M. Chung, R.S. Daum, J.M. Hiller, and M.C. Billone, 13th International Symposium on Zirconium in the Nuclear Industry, Annecy, France, ASTM STP 1423 (2002), p. 561.

  26. G.G. Libowitz, J. Nucl. Mater. 5, 228 (1962).

    Article  Google Scholar 

  27. A.R. Massih and L.O. Jernkvist, Comp. Mater. Sci. 46, 1091 (2009).

    Article  Google Scholar 

  28. L.-Q. Chen Annu, Rev. Mater. Res. 32, 113 (2001).

    Article  Google Scholar 

  29. H. Emmerich, Adv. Phys. 57, 1 (2008).

    Article  Google Scholar 

  30. I. Steinbach, Mater. Sci. Eng. 17, 073001 (2009).

    MathSciNet  Google Scholar 

  31. J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 28, 258 (1958).

    Article  Google Scholar 

  32. S.M. Allen and J.W. Cahn, J. Phys. C7 (1977).

  33. S. Bhattacharyya, T.W. Heo, K. Chang, and L.-Q. Chen, Model. Simul. Mater. Sci. Eng. 19, 035002 (2011).

    Article  Google Scholar 

  34. X.Q. Ma, S.Q. Shi, C.H. Woo, and L.-Q. Chen, Comp. Mater. Sci. 23, 283 (2002).

    Article  Google Scholar 

  35. Y.H. Wen, J.P. Simmons, C. Shen, C. Woodward, Y. Wang, Acta Mater. 51, 1123 (2003).

    Google Scholar 

  36. T.W. Heo, L. Zhang, Q. Du, and L.-Q. Chen, Scripta Mater. 63, 8 (2010).

    Article  Google Scholar 

  37. X.H. Guo, S.Q. Shi, Q.M. Zhang, and X.Q. Ma, J. Nucl. Mater. 378, 120 (2008).

    Article  Google Scholar 

  38. X.H. Guo, S.Q. Shi, Q.M. Zhang, and X.Q. Ma, J. Nucl. Mater. 378, 110 (2008).

    Article  Google Scholar 

  39. Y.H. He, X.H. Guo, and Q.M. Zhang, Int. J. Nonlin. Sci. Numer. Simulat. 9, 103 (2008).

    Google Scholar 

  40. X.Q. Ma, S.Q. Shi, S.Y. Hu, C.H. Woo, and L.-Q. Chen, J. Univ. Sci. Technol. Beijing 12, 416 (2005).

    Google Scholar 

  41. X.Q. Ma, S.Q. Shi, C.H. Woo, and L.-Q. Chen, Mater. Sci. Eng., A 334, 6 (2002).

    Article  Google Scholar 

  42. X.Q. Ma, S.Q. Shi, C.H. Woo, and L.-Q. Chen, Scripta Mater. 47, 237 (2002).

    Article  Google Scholar 

  43. Y. Udagawa, M. Yamaguchi, H. Abe, N. Sekimura, and T. Fuketa, Acta Mater. 58, 3927 (2010).

    Article  Google Scholar 

  44. D.O. Northwood and R.W. Gilbert, J. Nucl. Mater. 78, 112 (1978).

    Article  Google Scholar 

  45. T.W. Heo, K.B. Colas, A.T. Motta, and L.-Q. Chen, unpublished (2011).

  46. S. Arsene, J. Bai, and P. Bompard, Metall. Mater. Trans. A 34A, 579 (2003).

    Article  Google Scholar 

  47. J.B. Bai, N. Ji, D. Gilbon, C. Prioul, and D. Francois, Metall. Mater. Trans. A 25A, 1199 (1994).

    Article  Google Scholar 

  48. J.B. Bai, C. Prioul, and D. Francois, Metall. Mater. Trans. A 25A, 1185 (1994).

    Article  Google Scholar 

  49. M.E. Flanagan, D.A. Koss, and A.T. Motta, Proceedings of the 2008 Water Reactor Fuel Performance Meeting, Seoul, Korea (2008).

  50. B.E. Boyack, A.T. Motta, K.L. Peddicord, C.A. Alexander, R.C. Deveney, B.M. Dunn, T. Fuketa, K.E. Higar, L.E. Hochreiter, S.E. Jensen, F.J .Moody, M.E. Nissley, J. Papin, G. Potts, D.W. Pruitt, J. Rashid, D.H. Risher, R.J. Rohrer, J.S. Tulenko, K. Valtonen, and W. Wiesenack, Phenomena Identification and Ranking Tables (PIRTs) for Reactivity Initiated Accidents in Pressurized Water Reactors Containing High Burnup Fuel, Nuclear Regulatory Commission, NUREG/CR-6742 (2001).

  51. R. Meyer, R.K. McCardell, and H.H. Scott, International Topical Meeting on Light Water Reactor Fuel Performance (Portland, OR: American Nuclear Society, 1997), p. 729.

    Google Scholar 

  52. R.O. Meyer, Nucl. Technol. 155, 293 (2006).

    Google Scholar 

  53. P.E. MacDonald, S.L. Seiffert, Z.R. Martinson, R.K. McCardell, D.E. Owen, and S.K. Fukuda, Nucl. Safety 21, 582 (1980).

    Google Scholar 

  54. R.O. Meyer, R.K. McCardell, H.M. Chung, D.J. Diamond, and H.H. Scott, Nucl. Safety 37, 372 (1996).

    Google Scholar 

  55. R.S. Daum, S. Majumdar, H. Tsai, T.S. Bray, D.A. Koss, A.T. Motta, and M.C. Billone, Proc. 4th Int. Sym. on Small Specimen Test Techniques, vol. STP 1418, ed. M.A. Sokolov, J.D. Landes, and G.E. Lucas (West Conshohocken, PA: ASTM, 2002), p. 195.

  56. J. Papin, M. Balourdet, F. Lemoine, F. Lamare, J.M. Frizonnet, and F. Schmitz, Nucl. Safety 37, 289 (1996).

    Google Scholar 

  57. V. Asmolov and L. Yegorova, Nucl. Safety 37, 343 (1996).

    Google Scholar 

  58. F. Schmitz and J. Papin, J. Nucl. Mater. 270, 55 (1999).

    Article  Google Scholar 

  59. R.S. Daum, S. Majumdar, D.W. Bates, A.T. Motta, D.A. Koss, and M.C. Billone, 13th International Symposium on Zirconium in the Nuclear Industry, Annecy, France, ASTM STP 1423 (2002), p. 702.

  60. R. Montgomery, N. Waeckel, and R. Yang, Topical Report on Reactivity Initiated Accidents: Bases for RIA Fuel and Core Coolability, Palo Alto, CA, EPRI Report Number 1002865, (2002).

  61. R.O. Montgomery, Y.R. Rashid, O. Ozer, and R.L. Yang, Nucl. Safety 37, 372 (1996).

    Google Scholar 

  62. V. Grigoriev, R. Jakobsson, and D. Schrire, 24th NSRR Technical Review Meeting (JAERI-Conf 2001-010) (Ibaraki-ken, Japan: JAERI, 2001), p. 139.

  63. J. Desquines, B. Cazalis, C. Bernaudat, C. Poussard, X. Averty, P. Yvon, R. Daum, J. Rashid, and D. Schrire, 14th International Symposium on Zr in the Nuclear Industry, vol. STP 1467 (Stockholm, Sweden: American Society for Testing and Materials (ASTM), 2005), p. 851.

  64. B. Cazalis, J. Desquines, C. Poussard, M. Petit, Y. Monerie, C. Bernaudat, P. Yvon, and X. Averty, Nucl. Technol. 157, 215 (2007).

    Google Scholar 

  65. J. Papin, B. Cazalis, J.M. Frizonnet, J. Desquines, F. Lemoine, V. Georgenthum, F. Lamare, and M. Petit, Nucl. Technol. 157, 230 (2007).

    Google Scholar 

  66. T. Nakamura, T. Fuketa, T. Sugiyama, and H. Sasajima, J. Nucl. Sci. Technol. 41, 37 (2004).

    Article  Google Scholar 

  67. F. Nagase and T. Fuketa, J. Nucl. Sci. Technol. 42, 58 (2005).

    Article  Google Scholar 

  68. R.S. Daum, D.W. Bates, D.A. Koss, and A.T. Motta, Proceedings of the International Conference on Hydrogen Effects on Material Behaviour and Corrosion Deformation Interactions, Sept 22–26 2002, Moran, WY (Warrendale, PA: Minerals, Metals and Materials Society, 2003), p. 249.

  69. A. Glendening, D.A. Koss, A.T. Motta, O.N. Pierron, and R.S. Daum, J. ASTM Int. 2, 1 (2005).

    Article  Google Scholar 

  70. O.N. Pierron, D.A. Koss, A.T. Motta, and K.S. Chan, J. Nucl. Mater. 322, 21 (2003).

    Article  Google Scholar 

  71. T.M. Link, D.A. Koss, and A.T. Motta, Nucl. Eng. Design 186, 379 (1998).

    Article  Google Scholar 

  72. M. Kerr, M.R. Daymond, R.A. Holt, and J.D. Almer, J. Nucl. Mater. 380, 70 (2008).

    Article  Google Scholar 

  73. R.S. Daum, S. Majumdar, and M.C. Billone, 2003 Nuclear Safety Research Conference (Washington, DC: U.S. Nuclear Regulatory Commission, 2003), p. 85.

  74. M. Aomi, T. Baba, T. Miyashita, K. Kamimura, T. Yasuda, Y. Shinohara, and T. Takeda, J. ASTM Int. 5 (2008), Paper ID JAI101262.

  75. R.E. Einziger, (Lemont, IL: Argonne National Laboratory, 1998).

  76. R.E. Einziger, Extending dry storage of spent LWR fuel for 100 years, Argonne National Lab., Doc.No ANL/CMT/CP-96494 (1998).

  77. J.J. Kearns, J. Nucl. Mater. 27, 64 (1968).

    Article  Google Scholar 

  78. K. Colas, A. Motta, M.R. Daymond, M. Kerr, and J. Almer, J. ASTM Int. 8 (2010), Paper ID JAI103033.

Download references

Acknowledgements

The authors would like to acknowledge discussions with Kimberly Colas, who was primarily responsible for much of the experimental work shown in this study, and with Taewook Heo, S. Q. Shi, and X. Q. Ma on phase-field simulations of hydride precipitation. The work was partially supported by grants number DMR-0710483 and DMR-0710616 from the National Science Foundation. Usage of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur T. Motta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motta, A.T., Chen, LQ. Hydride Formation in Zirconium Alloys. JOM 64, 1403–1408 (2012). https://doi.org/10.1007/s11837-012-0479-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0479-x

Keywords

Navigation