Skip to main content
Log in

Spark plasma sintering for multi-scale surface engineering of materials

  • Multiscale Phenomena in Surfaces
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recently, significant progress has been made in understanding the effect of multi-scale microstructural features, including nano-, micro-, and macro-features, on the properties of materials. Controlling the length scale of micro-structural features provides tremendous opportunities for enhancing the properties of materials, including extraordinary strength and hardness, unprecedented damage from tribological contacts, and improvements in a number of functional properties of the materials. Spark plasma sintering (SPS) process which combines the effects of uniaxial pressure and pulsed direct current is becoming increasingly important for the processing of bulk shapes of amorphous and nanostructured materials. These materials can also be good candidates for high-performance coatings. This article presents a review of our ongoing efforts to use SPS to produce engineered coatings of amorphous and nanostructured materials for various applications, including structural, tribological, and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Miller and P. Liaw, editors, Bulk Metallic Glasses (New York: Springer, 2008).

    Google Scholar 

  2. H. Gleiter, Nanostruct. Mater., 6(1–4) (1995), pp. 3–14.

    Article  CAS  Google Scholar 

  3. H. Gleiter, Acta Mater., 48(1) (2000), pp. 1–29.

    Article  CAS  Google Scholar 

  4. W.L. Johnson, Mater. Sci. Forum, 225–227 (1996), pp. 35–50.

    Article  Google Scholar 

  5. P.Y. Li et al., Mater. Sci. Eng. A, 449–451 (2007), pp. 1095–1098.

    Google Scholar 

  6. A.S. Edelstein and R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications (New York: Taylor and Francis, 1996).

    Book  Google Scholar 

  7. J.R. Groza and R.J. Dowdlng, Nanostruct. Mater., 7(7) (1996), pp. 749–768.

    Article  CAS  Google Scholar 

  8. N.B. Dahotre and S.P. Harimkar, Laser Fabrication and Machining of Materials (New York: Springer, 2007).

    Google Scholar 

  9. K. Balanl et al., Acta Mater., 20 (2008), pp. 5984–5994.

    Article  ADS  Google Scholar 

  10. J.W. Dini, Electrodeposition: The Materials Science of Coatings and Substrates (Norwich, NY: Noyes Publication, 1993).

    Google Scholar 

  11. L.A. Dobrzanski et al., J. Mater. Process. Technol., 175(1–3) (2006), pp. 179–185.

    Article  CAS  Google Scholar 

  12. T. Stoltenhoffetal., J. Therm. Spray Technol., 11(4) (2002), pp. 542–550.

    Article  ADS  Google Scholar 

  13. T. Burakowski and T. Wierzchon, Surface Engineering of Metals: Principles, Equipment, Technologies (Boca Raton, FL: CRC Press, 1999).

    Google Scholar 

  14. Q. Zhu et al., Appl. Surf. Sci., 253 (2007), pp. 7060–7064.

    Article  CAS  ADS  Google Scholar 

  15. I. Manna et al., Surf. Coat. Technol., 201 (2006), pp.434–440.

    Article  CAS  Google Scholar 

  16. X. Wu and Y. Hong, Surf. Coat. Technol., 141 (2001), pp. 141–144.

    Article  CAS  Google Scholar 

  17. X. Wu et al., Mater. Lett., 56 (2002), pp. 838–841.

    Article  CAS  Google Scholar 

  18. J.C. Farmer et al., J. Mater. Res., 22 (2007), pp. 2297–2311.

    Article  CAS  ADS  Google Scholar 

  19. T. Parker et al., Mater. Lett., 48 (2001), pp. 184–187.

    Article  CAS  Google Scholar 

  20. T.M. Yue et al., Mater. Lett., 61 (2007), pp. 209–212.

    Article  CAS  Google Scholar 

  21. T.T. Wong and G.Y Liang, Mater. Charact., 38 (1997), pp. 85–89.

    Article  CAS  Google Scholar 

  22. A. Basu et al., Surf. Coat. Technol., 202 (2008), pp. 2623–2631.

    Article  CAS  Google Scholar 

  23. L. Mingxi et al., Appl. Surf. Sci., 252(8) (2006), pp. 2882–2887.

    Article  ADS  Google Scholar 

  24. L. Ajdelsztajn et al., J. Therm. Spray Technol., 15(4), (2006), pp. 495–500.

    Article  CAS  ADS  Google Scholar 

  25. I. Gurrappal and L. Binder, Sci. Technol. Adv. Mater., 9 (2008), 043001.

    Article  Google Scholar 

  26. K.A. Khor et al., Mater. Sci. Eng. A, 356 (2003), pp. 130–135.

    Article  Google Scholar 

  27. M. Omori, Mater. Sci. Eng., A 287 (2000), pp. 183–188.

    Article  Google Scholar 

  28. S.W. Wang et al., Mater. Res. Bull., 35 (2000), pp. 619–628.

    Article  CAS  Google Scholar 

  29. D.M. Hulbert et al., Scripta Mater., 60 (2009), pp. 835–838.

    Article  CAS  Google Scholar 

  30. R. Orru et al., Mater. Sci. Eng. R, 63 (2009), pp. 127–287.

    Article  Google Scholar 

  31. A. Nishimoto and K. Akamatsu, Plasma Processes Polym., 6 (2009), pp. S941–S943.

    Article  CAS  Google Scholar 

  32. D. Oquab et al., Adv. Eng. Mater., 9(5) (2007), pp. 413–417.

    Article  CAS  Google Scholar 

  33. B. Prawara et al., Surf. Coat. Technol., 162 (2003), pp. 234–241.

    Article  CAS  Google Scholar 

  34. H. Li et al., Surf. Coat. Technol., 194 (2005), pp. 96–102.

    Article  CAS  Google Scholar 

  35. Y. Kim et al., J. Electron. Mater, 36(10) (2007), pp. 1252–1257.

    Article  CAS  ADS  Google Scholar 

  36. S.P. Harimkar et al., J. Non-Cryst. Solids, 355 (2009), pp. 2179–2182.

    Article  CAS  ADS  Google Scholar 

  37. A. Singh and S.P. Harimkar, J. Alloys Compd., 2010 (in press).

  38. L.L. Hench, J.Am.CeramicSoc., 74(7) (1991), p.1487.

    Article  CAS  Google Scholar 

  39. S.M. Best et al., J. Eur. Ceram. Soc., 28(7) (2008), p. 1319.

    Article  CAS  Google Scholar 

  40. A. El-Ghannam, Expet. Rev. Med. Dev., 2(1) (2005), pp. 87–101.

    Article  Google Scholar 

  41. F.S. Kaplan et al., Orthopedic Basic Science, AAOS. ed. S.R. Simon, 7 (1994), pp. 127–184.

  42. L. Zhang and T.J. Webster, Nanotoday, 4(1) (2009), pp. 66–80.

    CAS  Google Scholar 

  43. T.J. Webster et al., J. Biomed. Mater. Res., 51 (2000), pp. 475–483.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip P. Harimkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulukutla, M., Singh, A. & Harimkar, S.P. Spark plasma sintering for multi-scale surface engineering of materials. JOM 62, 65–71 (2010). https://doi.org/10.1007/s11837-010-0090-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0090-y

Keywords

Navigation