Skip to main content
Log in

Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study

  • Surfaces for Bio-applications
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Bacterial adhesion to biomaterials, mineral surfaces, or other industrial surfaces is strongly controlled by the way bacteria interact with protein layers or organic matter and other biomolecules that coat the materials. Despite this knowledge, many studies of bacterial adhesion are performed under clean conditions, instead of in the presence of proteins or organic molecules. We chose fetal bovine serum (FBS) as a model protein, and prepared FBS films on quartz crystals. The thickness of the FBS layer was characterized using atomic force microscopy (AFM) imaging under liquid and quartz crystal microbalance with dissipation (QCM-D). Next, we characterized how the model biomaterial surface would interact with the nocosomial pathogen Staphylococcus epidermidis. An AFM probe was coated with S. epidermidis cells and used to probe a gold slide that had been coated with FBS or another protein, fibronectin (FN). These experiments show that AFM and QCM-D can be used in complementary ways to study the complex interactions between bacteria, proteins, and surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Francois et al., J. Lab. Clin. Med., 135 (2000), p. 32.

    Article  PubMed  CAS  Google Scholar 

  2. Y.A. Que et al., J. Exp. Med., 201 (2005), p. 1627.

    Article  PubMed  CAS  Google Scholar 

  3. M. Delmi et al., J. Orthop. Res., 12 (1994), p. 432.

    Article  PubMed  CAS  Google Scholar 

  4. L. Cristancho et al., Vet. Microbiol., 126 (2008), pp. 200–209.

    Article  PubMed  CAS  Google Scholar 

  5. X. Xiao and L. Qian, Langmuir, 16 (2000), pp. 8153–8158.

    Article  CAS  Google Scholar 

  6. N.J.C. Strachan et al., Int. J. Food Microbiol., 112 (2006), p. 129.

    Article  PubMed  Google Scholar 

  7. R.E. Polonio et al., Antimicrob Agents Chemother, 45 (2001), p. 3262.

    Article  PubMed  CAS  Google Scholar 

  8. H.G. Hansma and J.H. Hoh, Annu. Rev. Biophys. Biomol. Struct., 23 (1994), pp. 115–140.

    Article  PubMed  CAS  Google Scholar 

  9. A.P. Gunning et al., J. Colloid and Interface Science, 183 (1996), pp. 600–602.

    Article  CAS  Google Scholar 

  10. H.G. Hansma, K. Kasuya, and E. Oroudjev, Curr. Opin. Struct. Biol., 14 (2004), pp. 380–385.

    Article  PubMed  CAS  Google Scholar 

  11. E. Balnois et al., Environmental Science & Technology, 33 (1999), pp. 3911–3917.

    Article  CAS  Google Scholar 

  12. K.D. Kwon et al., Environmental Science & Technology, 40 (2006), pp. 7739–7744.

    Article  CAS  Google Scholar 

  13. F. Hook et al., Anal. Chem., 73 (2001), pp. 5796–5804.

    Article  PubMed  CAS  Google Scholar 

  14. F. Hook et al., Proceedings of the Joint European Frequency and Time Forum (Neuchatel, Switzerland: Swiss Foundation for Research in Microtechnology, 1999), pp. 966–972.

    Google Scholar 

  15. F. Höök and M. Rudh, Bti, February/March (2005), pp. 8–13.

  16. R. Richter, A. Mukhopadhyay, and A. Brisson, Biophys. J., 85 (2003), pp. 3035–3047.

    Article  PubMed  ADS  CAS  Google Scholar 

  17. M.A. Cooper and V.T. Singleton, J. Mol. Recognit., 20 (2007), pp. 154–184.

    Article  PubMed  CAS  Google Scholar 

  18. G. Sauerbrey, Z. Phys. (1959), pp. 206–222.

  19. M.V. Voinova, M. Jonson, and B. Kasemo, Biosens. Bioelectron., 17 (2002), p. 835.

    Article  PubMed  CAS  Google Scholar 

  20. K.K. Kanazawa and J.G. Gordon, Anal. Chim. Acta, 175 (1985), pp. 99–105.

    Article  CAS  Google Scholar 

  21. T. Kuzniatsova et al., Microporous and Mesoporous Materials, 103 (2007), pp. 102–107.

    Article  CAS  Google Scholar 

  22. J. Malmstrom et al., Langmuir, 23 (2007), pp. 9760–9768.

    Article  PubMed  Google Scholar 

  23. M.V. Voinova et al., Phys. Scr., 59 (1999), pp. 391–396.

    Article  ADS  CAS  Google Scholar 

  24. K. Rechendorff et al., J. Appl. Phys. (2007), p. 101.

  25. Y. Liu, J. Strauss, and T.A. Camesano, Langmuir, 23 (2007), pp. 7134–7142.

    Article  PubMed  CAS  Google Scholar 

  26. J. Strauss et al., Microbial Surfaces: Structure, Interactions, and Reactivity, ACS Symposium Series 984, ed. T.A. Camesano and C.M. Mello (Washington, D.C.: American Chemical Society, 2008), pp. 79–99.

    Chapter  Google Scholar 

  27. Y.S. Liu, J. Camesano, and T.A. Camesano, Biomaterials, 29 (2008), pp. 4374–4382.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terri A. Camesano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strauss, J., Liu, Y. & Camesano, T.A. Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study. JOM 61, 71–74 (2009). https://doi.org/10.1007/s11837-009-0138-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0138-z

Keywords

Navigation