Skip to main content
Log in

Functional nanostructures through nanosecond laser dewetting of thin metal films

  • Materials and Coatings
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Techniques for processing nanoscale metallic structures with spatial order and tunable physical characteristics, such as size and microstructure, are paramount to realizing applications in the areas of magnetism, optics, and sensing. This paper discusses how pulsed laser melting of ultrathin films can be a powerful but simple and cost-effective technique to fabricate functional nanostructures. Ultrathin metal films (1 nm to 1,000 nm) on inert substrates like SiO2 are generally unstable, with their free energy resembling that of a spinodal system. Such films can spontaneously evolve into predictable nanomorphologies with well-defined length scales. This study reviews this laser-based experimental technique and provides examples of resulting robust nanostructures that can have applications in magnetism and optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Ross, J. Tersoff, and R. Tromp, “Coarsening of Self-assembled Ge Quantum Dots on Si(001),” Phys. Rev. Lett., 80 (1998), pp. 984–987.

    Article  CAS  Google Scholar 

  2. S. Kondo and R. Asal, “A Reaction-Diffusion Wave on the Skin of the Marine Angelfish Pomacanthus,” Nature, 376 (1993), pp. 765–768.

    Article  Google Scholar 

  3. J. Trice et al., “Investigation of Pulsed Laser Induced Dewetting in Nanoscopic Co Films: Theory and Experiments,” Phys. Rev. B, 75 (2007), no. 235439.

    Google Scholar 

  4. A. Ashton et al., “Formation of Coastline Features by Large-scale Instabilities Induced by High-angle Waves,” Nature, 414 (2001), pp. 296–300.

    Article  CAS  Google Scholar 

  5. H.A. Atwater, “The Promise of Plasmonics,” Scientific American, 296(4) (2007), pp. 56–63.

    Article  CAS  Google Scholar 

  6. M. Quinten et al., “Electromagnetic Energy Transport via Linear Chains of Silver Nanoparticles,” Opt. Lett., 23 (1998), p. 1331.

    Article  CAS  Google Scholar 

  7. J. Krenn et al., “Direct Observation of Localized Surface Plasmon Coupling,” Phys. Rev. B, 60 (1999), pp. 5029–5033.

    Article  CAS  Google Scholar 

  8. M.L. Brongerman, J.W. Hartman, and H.A. Atwater, “Electromagnetic Energy Transfer and Switching in Nanoparticle Chain Arrays below the Diffraction Limit,” Phys. Rev. B, 62 (2000), no. R16356.

    Google Scholar 

  9. S. Sun et al., “Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices,” Science, 287 (2000), pp. 1989–1992.

    Article  CAS  Google Scholar 

  10. S. Fan et al., “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science, 283 (1999), pp. 512–514.

    Article  CAS  Google Scholar 

  11. P.M. Ajayan and S. Iijima, “Capillarity-induced Filling of Carbon Nanotubes,” Nature, 361 (1993), pp. 333–334.

    Article  CAS  Google Scholar 

  12. C.-H. Kiang et al., “Molecular Nanowires of 1 nm Diameter from Capillary Filling of Single-Walled Carbon Nanotubes,” J. Phys. Chem. B, 103 (1999), pp. 7449–7451.

    Article  CAS  Google Scholar 

  13. S. Serrano-Guisan et al., “Enhanced Magnetic Field Sensitivity of Spin-dependent Transport in Cluster-assembled Metallic Nanostructures,” Nat. Mat., 5 (2006), pp. 730–734.

    Article  CAS  Google Scholar 

  14. Y. Wu et al., “Spin Injection from Ferromagnetic Co Nanoclusters into Organic Semiconducting Polymers,” Phys. Rev. B, 75(7) (2007), no. 075413.

    Google Scholar 

  15. A.K. Gangopadhyay et al., “Heterogeneous Nucleation of Amorphous Alloys on Catalytic Nanoparticles to Produce 2D Patterned Nanocrystal Arrays,” Nanotechnology, 18 (2007), no. 485606.

  16. J. Bischof et al., “Dewetting Modes of Thin Metallic Films: Nucleation of Holes and Spinodal Dewetting,” Phys. Rev. Lett., 77(8) (1996), pp. 1536–1539.

    Article  CAS  Google Scholar 

  17. J. Bischof et al., “Behavior of Thin Metallic Films Melted with a Nanosecond Laser Pulse,” 2777 (1996), pp. 119–127.

    CAS  Google Scholar 

  18. S. Herminghaus et al., “Spinodal Dewetting in Liquid Crystal and Liquid Metal Films,” Science, 282 (1998), pp. 916–919.

    Article  Google Scholar 

  19. S.J. Henley, J.D. Carey, and S.R.P. Silva, “Pulsed-laser-induced Nanoscale Island Formation in Thin Metal-on-oxide Films,” Phys. Rev. B, 72 (2005), pp. 195408-1–195408-10.

    Google Scholar 

  20. C. Favazza et al., “Nanoparticle Ordering by Dewetting of Co on SiO2,” J. Electron. Mater., 35 (2006), pp. 1618–1620.

    Article  CAS  Google Scholar 

  21. C. Favazza et al., “Laser-induced Short-and Long-range Ordering of Co Nanoparticles on SiO2,” Appl. Phys. Lett., 88 (2006), pp. 1531181–1531183.

    Article  CAS  Google Scholar 

  22. C. Favazza, R. Kalyanaraman, and R. Sureshkumar, “Robust Nanopatterning by Laser-induced Dewetting of Metal Nanofilms,” Nanotechnology, 17 (2006), pp. 4229–4234.

    Article  CAS  Google Scholar 

  23. C. Favazza et al., “Self-organized Metal Nanostructures through Laser-interference Driven Thermocapillary Convection,” Appl. Phys. Lett., 91 (2007), no. 043105.

    Google Scholar 

  24. J. Trice et al., “Novel Self-organization Mechanism in Ultrathin Liquid Films: Theory and Experiment,” Phys. Rev. Lett., 101 (2008), no. 017802.

    Google Scholar 

  25. J.W. Cahn, “Phase Separation by Spinodal Decomposition in Isotropic Systems,” J. Chem. Phys., 62 (1965), pp. 93–99.

    Article  Google Scholar 

  26. G. Reiter, “Dewetting of Thin Polymer Films,” Phys. Rev. Lett., 68(1) (1992), pp. 75–78.

    Article  CAS  Google Scholar 

  27. U. Thiele, M. Mertig, and W. Pompe, “Dewetting of an Evaporating Thin Liquid Film: Heterogeneous Nucleation and Surface Instability,” Phys. Rev. Lett., 80(13) (1998), pp. 2869–2872.

    Article  CAS  Google Scholar 

  28. T. Stange and D. Evans, “Nucleation and Growth of Defects Leading to Dewetting of Thin Polymer Films,” Langmuir, 13 (1997), pp. 4459–4465.

    Article  CAS  Google Scholar 

  29. U. Thiele, M.G. Velarde, and K. Neuffer, “Dewetting: Film Rupture by Nucleation in the Spinodal Regime,” Phys. Rev. Lett., 87(1) (2001), no. 016104.

    Google Scholar 

  30. B.J. Spencer, P.W. Voorhees, and S.H. Davis, “Morphological Instabilities in Epitaxially Strain Dislocation-Free Solid Films,” Phys. Rev. Lett., 67 (1991), pp. 3696–3699.

    Article  CAS  Google Scholar 

  31. W. Lu and Z. Suo, “Dynamics of Nanoscale Pattern Formation of an Epitaxial Monolayer,” J. Mech. Phys. Solids, 49 (2001), pp. 1937–1950.

    Article  Google Scholar 

  32. F.K. LeGoues et al., “Surface-Stress-Induced Order in SiGe Alloy Films,” Phys. Rev. Lett., 64 (1990), pp. 2038–2042.

    Article  CAS  Google Scholar 

  33. J. Israelachvili, Intermolecular and Surface Forces (London: Academic Press, 1992), pp. 137–159.

    Google Scholar 

  34. V.A. Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (New York: Cambridge University Press, 2006).

    Google Scholar 

  35. A. Vrij, “Possible Mechanism for the Spontaneous Rupture of Thin, Free Liquid Films,” Discuss. Faraday Soc., 42 (1966), pp. 23–27.

    Article  Google Scholar 

  36. A. Vrij and J.T.G. Overbeek, “Rupture of Thin Liquid Films Due to Spontaneous Fluctuations in Thickness,” J. Am. Chem. Soc., 90 (1968), pp. 3074–3078.

    Article  CAS  Google Scholar 

  37. A. Sharma and E. Ruckenstein, “Finite-Amplitude Instability of Thin Free and Wetting Films: Prediction of Lifetimes,” Langmuir, 2 (1986), pp. 480–494.

    Article  CAS  Google Scholar 

  38. A. Sharma, “Relationship of Thin Film Stability and Morphology to Macroscopic Parameters of Wetting in the Apolar and Polar Systems,” Langmuir, 9(3) (1993), pp. 861–869.

    Article  CAS  Google Scholar 

  39. R. Seemann, S. Herminghaus, and K. Jacobs, “Dewetting Patterns and Molecular Forces,” Phys. Rev. Lett., 86 (2001), pp. 5534–5537.

    Article  CAS  Google Scholar 

  40. R. Pretorius, J. Harris, and M.-A. Nicolet, “Reaction of Thin Metal Films with SiO2 Substrates,” Sol. State Elect., 21 (1978), pp. 667–675.

    Article  CAS  Google Scholar 

  41. L.H. Ho et al., “Evidence of Co/SiO2 Reaction during Rapid Thermal Annealing,” J. Mater. Res., 8 (1993), pp. 467–472.

    Article  CAS  Google Scholar 

  42. X. Hu, D. Cahill, and R. Averback, “Nanoscale Pattern Formation in Pt Thin Films due to Ion-beam Induced Dewetting,” Appl. Phys. Lett., 76 (2000), pp. 3215–3217.

    Article  CAS  Google Scholar 

  43. F. Brochard Wyart and J. Daillant, “Drying of Solids Wetted by Thin Liquid Films,” Can. J. Phys., 68(199), pp. 1084–1088.

  44. H. Krishna et al., “Unusual Size-dependent Magnetization in Near Hemispherical Co Nanomagnets on SiO2 from Fast Pulsed Laser Processing,” J. Appl. Phys., 103(7) (2008), no. 073902.

    Google Scholar 

  45. X. Chen, S. Mandre, and J.J. Feng, “Partial Coalescence between a Drop and a Liquid-liquid Interface,” Phys. Fl., 18(5) (2006), no. 051705.

    Google Scholar 

  46. Z. Shan et al., “Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel,” Science, 305 (2004), pp. 654–657.

    Article  CAS  Google Scholar 

  47. H. Krishna et al., “Laser-induced Dewetting Nanomorphologies in Single and Bilayer Metal Films,” Vol. 960E (Warrendale, PA: MRS, 2007), pp. 0960-N03-02.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kalyanaraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishna, H., Favazza, C., Gangopadhyay, A.K. et al. Functional nanostructures through nanosecond laser dewetting of thin metal films. JOM 60, 37–42 (2008). https://doi.org/10.1007/s11837-008-0115-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-008-0115-y

Keywords

Navigation