Skip to main content

Advertisement

Log in

The formation of protective nitride surfaces for PEM fuel cell metallic bipolar plates

  • Research Summary
  • Fuel Cells
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The selective gas nitridation of model nickel-based alloys was used to form dense, electrically conductive and corrosion-resistant nitride surface layers, including TiN, VN, CrN, Cr2N, as wellas a complex NiNbVN phase. Evaluation for use as a protective surface for metallic bipolar plates in proton exchange membrane fuel cells (PEMFC) indicated that CrN/Cr2N based surfaces holdpromise to meet U.S. Department of Energy (DOE) performance goals for automative applications. The thermally grown CrN/Cr2N surface formed on model Ni−Cr based alloys exhibited good stability and low electrical resistance in single-cell fuel cell testing under simulated drive-cycle conditions. Recent results indicate that similar protective chromium nitride surfaces can be formed on less expensive Fe−Cr based alloys potentially capable of meeting DOE cost goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Larminie and A. Dicks, Fuel Cell Systems Explained (West Sussex, England: John Wiley & Sons, Ltd., 2000).

    Google Scholar 

  2. R. Borup and N.E. Vanderborgh, Mat Res. Soc. Symp. Proc. 393, ed. D.H. Doughty et al. (Warrendale, PA: Material Research Society, 1995), p. 151.

    Google Scholar 

  3. B.C.H. Steele and A. Heinzel, Nature, 414 (2001), pp. 345–352.

    Article  CAS  Google Scholar 

  4. N.P. Brandon, S. Skinner, and B.C.H. Steele, Ann. Rev. Mater. Res., 33 (2003), p. 183.

    Article  CAS  Google Scholar 

  5. A. Hermann, T. Chaudhuri, and P. Spagnol, Int. J. Hydrogen Energy, 30 (2005), p. 1297.

    Article  CAS  Google Scholar 

  6. Figure reproduced from Los Alamos National Laboratory. Fuel Cells-Green Power, LA-UR-99-3231, courtesy of the United States Department of Energy.

  7. T.M. Besmann et al., J. Electrochem. Soc., 147 (2000), pp. 4083–4086.

    Article  CAS  Google Scholar 

  8. J. Scholta et al., J. Power Sources, 84 (1999), pp. 231–234.

    Article  CAS  Google Scholar 

  9. D.P. Wilkinson et al., “Method of Fabricating an Embossed Fluid Flow Field Plate,” U.S. patent 5,527,363 (18 June 1996).

  10. N. Cunningham et al., J. Electrochem. Soc., 149 (2002), pp. 905–911.

    Article  Google Scholar 

  11. R.J. Lawrance, “Low Cost Bipolar Current Collector-Separator for Electrochemical Cells,” U.S. patent 4,214,969 (29 July 1980).

  12. E.N. Balko and R.J. Lawrance, “Carbon Fiber Reinforced Fluorocarbon-Graphite Bipolar Current Collector-Separator’, U.S. patent 4,339,322 (13 July 1982).

  13. D.N. Busick and M.S. Wilson, “Composite Bipolar Plates for Fuel Cells,” Proton Conducting Membrane Fuel Cells II, Vol. 98-27 (Boston, MA: The Electrochemical Society, 1998), pp. 435–445.

    Google Scholar 

  14. M.S. Wilson and D.N. Busick, “Composite Bipolar Plate for Electrochemical Cells,” U.S. patent 6,248,467 (19 June 2001).

  15. J.H. Wang, D.G. Baird, and J.E. McGrath, J. Power Sources, 150 (2005), p. 110.

    Article  Google Scholar 

  16. M.H. Abdelhamid et al., “Polymer Composite,” U.S. patent application 20,040,062,974 (26 June 2003).

  17. R.K.A.M. Mallant et al., Program and Abstracts of the Fuel Cell Seminar (Washington, D.C.: Fuel Cell Seminar Headquarters, 1994), p. 503.

    Google Scholar 

  18. R.G. Spear, H.H. Mueggenburg, and R. Hodge, “Metal Platelet Fuel Cells Production and Operation Methods” U.S. patent 5,683,828 (4 November 1997).

  19. M.S. Wilson and C. Zawodzinski, “Fuel Cell with Metal Screen Flow-Field’ U.S. patent 6,207,310 (27 March 2001).

  20. D.R. Hodgson and E. Farndon, “Substrate Treatment”, U.S. patent application 20,030, 170,526 (4 February 2003).

  21. B. May and D.R. Hodgson, “Fuel Cells and Fuel Cell Plates,” U.S. patent application 20,010,021,470 (14 March 2001).

  22. Q. Fan et al., “Low Cost Metal Bipolar Plates and Current Collectors for Polymer Electrolyte Membrane Fuel Cells,’ U.S. patent application 20,020,172,849 (6 April 2001).

  23. Y. Tarutani et al., “Stainless Steel Product for Producing Polymer Electrode Fuel Cell,’ U.S. patent 6,379,476 (30 April 2002).

  24. P.L. Hentall et al., J. Power Sources, 80 (1999), pp. 235–241.

    Article  CAS  Google Scholar 

  25. A. Pozio et al., Electrochimica Acta, 48 (11) (2003), pp. 1543–1549.

    Article  CAS  Google Scholar 

  26. R.C. Makkus et al., J. Power Sources, 86 (2000), p. 274.

    Article  CAS  Google Scholar 

  27. D.P. Davies et al., J. Appl. Electrochem., 30 (2000), pp. 101–105.

    Article  CAS  Google Scholar 

  28. H. Wang, M. Sweikart, and J.A. Turner, J. Power Sources, 115 (2003), pp. 243–251.

    Article  CAS  Google Scholar 

  29. H. Wang and J.A. Turner, J. Power Sources, 128 (2004), p. 193.

    Article  CAS  Google Scholar 

  30. H. Wang, G. Teeter, and J.A. Turner, J. Electrochem. Soc., 153 (3) (2005), p. B99.

    Article  Google Scholar 

  31. C.L. Ma, S. Warthesen, and D.A. Shores, J. New Mater. Electrochem. Sys., 3 (2000), p. 221.

    CAS  Google Scholar 

  32. J. Wind et al., J. Power Sources, 105 (2002), p. 256.

    Article  CAS  Google Scholar 

  33. Y. Li et al., “Corrosion Resistant PEM Fuel Cell,” U.S. patent 5,624,769 (29 April 1997).

  34. S. Joseph et al., Int. J. Hydrogen Energy, 30 (12) (2005), p. 1339.

    Article  CAS  Google Scholar 

  35. M. Li et al., Corr. Sci., 46 (2004), pp. 1369–1380.

    Article  CAS  Google Scholar 

  36. S.J. Lee, C.H. Huang, and Y.P. Chen, J. Mater. Process. Tech., 140 (2003), pp. 688–693.

    Article  CAS  Google Scholar 

  37. N. Aukland et al., J. Mater. Res., 19 (6) (2004), p. 1723.

    Article  CAS  Google Scholar 

  38. M.H. Abdelhamid, R.H. Blunk, and G. Vyas, “Enhanced Stability Bipolar Plate”, U.S. patent application 20,060,019,142 (26 January 2006).

  39. The Hydrogen, Fuel Cells & Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan (Washington, D.C.: U.S. Department of Energy, February 2005), pp. 3–89, http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/.

  40. W. Brandl and C. Gendig, Thin Solid Films, 343 (1996), pp. 290–291.

    Google Scholar 

  41. K. Weisbrod, D. Prier II, and N. Vanderborgh, FY1999 Progress Report for Fuel Cells For Transportation Proceedings Energy Efficiency and Renewable Energy Review (Washington, D.C.: U.S. Department of Energy, 1999), p. 117.

    Google Scholar 

  42. K.S. Weil et al., “Development of Low-Cost, Clad Metal Bipolar Plates for PEM Fuel Cells,” 2005 Annual Progress Report, DoE Hydrogen, Fuel Cells, and Infrastructure Program, www.hydrogen.energy.gov/annual_progress05_fuelcells.html#d.

  43. M.P. Brady et al., Electrochem. and Solid-State Lett., 5 (2002), pp. 245–247.

    Article  Google Scholar 

  44. S. Seal, JOM, 53 (9) (2001), p. 51.

    Article  CAS  Google Scholar 

  45. P. Kofstad, High Temperature Corrosion (London: Elsevier Applied Science Publishing, 1988).

    Google Scholar 

  46. M.P. Brady, B. Gleeson, and I.G. Wright, JOM, 52 (1) (2000), pp. 16–21.

    Article  CAS  Google Scholar 

  47. G.Y. Lai, High-Temperature Corrosion of Engineering Alloys (Materials Park, OH: ASM International, 1990), p. 75.

    Google Scholar 

  48. D.R. Sigler, Oxid. Met., 32 (5/6) (1989), pp. 337–355.

    Article  CAS  Google Scholar 

  49. R.A. Rapp, Corrosion, 21 (1965), pp. 382–401.

    CAS  Google Scholar 

  50. M.P. Brady et al., Materials and Corrosion, 56 (11) (2005), pp. 748–755.

    Article  CAS  Google Scholar 

  51. G.C. Savva, G.C. Weatherly, and J.S. Kirkaldy, Met. Mater. Trans. A. 27 (6) (1996), pp. 1611–1622.

    Google Scholar 

  52. H.J. Christ, S.Y. Chang, and U. Krupp, Materials and Corrosion, 54 (11) (2003), pp. 887–894.

    Article  CAS  Google Scholar 

  53. R.P. Rubly and D.L. Douglass, Oxid. Met., 35 (3–4) (1991), pp. 259–278.

    Article  CAS  Google Scholar 

  54. I. Paulauskas et al., “Corrosion Behavior of CrN. Cr2N and Pl Phase Surfaces Formed on Nitrided Ni-50Cr with Application to Proton Exchange Membrane Fuel Cell Bipolar Plates,” Corrosion Science (in press).

  55. M.P. Brady et al., Scripta Mat., 50 (7) (2004), pp. 10–17.

    Google Scholar 

  56. H. Wang et al., J. Power Sources, 138 (2004), pp. 86–93.

    Article  CAS  Google Scholar 

  57. A.A. Kodentsov et al., Metal. and Mater. Trans. A. 27 (1996), pp. 59–69.

    Article  Google Scholar 

  58. U. Krupp, S.Y. Chang, and H.-J. Christ, Z. Metallkunde, 91 (2000), pp. 1006–1012.

    CAS  Google Scholar 

  59. N. Ono, M. Kajihara, and M. Kikuchi, Met. Trans. A. 23 (1992), pp. 1389–1393.

    Google Scholar 

  60. H. Wang et al., J. Power Sources, 138 (2004), p. 79.

    Article  CAS  Google Scholar 

  61. B. Yang et al., to be submitted to Acta Materialia.

  62. H. Kuwamoto, J.M. Honig, and J. Appel, Phys. Rev. B, 22 (1980), p. 2626.

    Article  CAS  Google Scholar 

  63. M.P. Brady et al., “Cost-Effective Surface Modification for Metallic Bipolar Plates,” 2005 Annual Progress Report, DOE Hydrogen, Fuel Cells, and Infrastructure Program, www.hydrogen.energy.gov/annual_progress05_fuelcells.html#d.

  64. C.A. Reiser et al., Electrochemical and Solid State Letters, 8 (6) (2005), pp. A273-A276.

    Article  CAS  Google Scholar 

  65. T.A. Bekkedahl et al., “Reducing Fuel Cell Cathode Potential during Startup and Shutdown,” U.S. patent application 20,040,081,866 (2004).

  66. M. Taguchi and J. Kurihara, Materials Transactions, 32 (1991), pp. 1170–1176.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, M.P., Yang, B., Wang, H. et al. The formation of protective nitride surfaces for PEM fuel cell metallic bipolar plates. JOM 58, 50–57 (2006). https://doi.org/10.1007/s11837-006-0054-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-006-0054-4

Keywords

Navigation