Skip to main content
Log in

New electrolytes for aluminum production: Ionic liquids

  • Overview
  • Aluminum Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this article, the reduction, refining/recycling, and electroplating of aluminum from room-temperature molten salts are reviewed. In addition, the characteristics of several non-conventional organic solvents, electrolytes, and molten salts are evaluated, and the applicability of these melts for production of aluminum is discussed with special attention to ionic liquids. Also reviewed are electrochemical processes and conditions for electrodeposition of aluminum using ionic liquids at near room temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Motzfeldt and B. Sanberg, “Chemical Investigations Concerning Carbothermic Reduction of Alumina,” Light Metals 1979, ed. W.S. Peterson (Warrendale, PA: The Metallurgical Society, 1979), pp. 411–428.

    Google Scholar 

  2. M.J. Bruno, “Overview of ALCOA Direct Reduction Process Technology,” LightMetals 1984, ed. J.P. McGeer (Warrendale, PA: TMS, 1984), pp. 1571–1590.

    Google Scholar 

  3. M. Lipsztajn and R.A. Osteryoung, “Increased Electrochemical Window in Ambient Temperature Neutral Ionic Liquids,” J. Electrochem. Soc., 130 (1983), p. 1968.

    Article  CAS  Google Scholar 

  4. T.E. Sutto, H.C. DeLong, and P.C. Trulove, Unpublished research.

  5. T.L. Riechel and J.S. Wilkes, “Reversible Plating and Stripping of Sodium at Inert Electrodes in Room Temperature Chloroaluminate Molten Salts,” J. Electrochem. Soc., 139 (1992), p. 977.

    Article  CAS  Google Scholar 

  6. S.P. Wicelinski, R.J. Gale, and J.S. Wilkes, “Low Temperature Chlorogallate Molten Salt Systems,” J. Electrochem. Soc., 134 (1987), p. 262.

    Article  CAS  Google Scholar 

  7. Peter Wasserscheid and Wilhelm Keim, “Ionic Liquids—New ‘Solutions’ for Transition Metal Catalysis,” Angew. Chem. Int. Fd., 39 (2000), pp. 3772–3789.

    Article  CAS  Google Scholar 

  8. J. Fuller, “Electrochemical Investigations of Alkali Metal Buffered Chloroaluminate Molten Salts,” Dissertation PhD (The University of Alabama, Tuscaloosa, AL, 1994), pp. 272.

    Google Scholar 

  9. R. Jones, G. Blomgren, and H. Kojima, editors, Electrochemical Reduction of Aromatic Ketones in a Room Temperature Molten Salt (St. Louis, MO: The Electrochemical Society, 1992), pp. 426–437.

    Google Scholar 

  10. R. Moy and F.P. Emmenegger, “Co-solvents for Chloroaluminate Electrolytes,” Electrochim. Acta, 37 (1992), p. 1061.

    Article  CAS  Google Scholar 

  11. Yuguang Zhao and T.J. VanderNoot, “Review: Electrodeposition of Aluminum from Nonaqueous Organic Electrolytic Systems and Room Temperature Molten Salts,” Electrochimica Acta, 42 (1) (1997), pp. 3–13.

    Article  CAS  Google Scholar 

  12. S. Takahashi et al., Extended Abstract no. 889, 177th Meeting of the Electrochemical Society (Montreal, Quebec, Canada, 6–11 May 1990).

  13. R.A. Osteryoung and J. Robinson, “An Electrochemical and Spectroscopic Study of Some Aromatic Hydrocarbons in the Room Temperature Molten Salt System Aluminum Chloride-n-butylpyridinium Chloride,” J. Electrochem. Soc., 101 (1979), pp. 323–327.

    Google Scholar 

  14. R.A. Osteryoung and R. Marrassi, Molten Salts Electrochemistry (Dordrecht, The Netherlands: Reidel, 1987), pp. 329–364.

    Google Scholar 

  15. Banqiu Wu, Ramana G. Reddy, and Robin D. Rodgers, “Aluminum Reduction via Near Room Temperature Electrolysis in Ionic Liquids,” Light Metals 2001, ed. J.L. Anjier (Warrendale, PA: TMS, 2001), pp. 237–243.

    Google Scholar 

  16. Banqiu Wu, Ramana G. Reddy, and Robin D. Rodgers, “Aluminum Recycling via Near Room Temperature Electrolysis in Ionic Liquids,” Fourth International Symposium on Recycling of Metals and Engineered Materials, ed. D.L. Stewart, Jr., J.C. Daley, and R.L. Stephens (Warrendale, PA: TMS, 2000), pp. 845–856.

    Google Scholar 

  17. T.T. Suda, C.L. Hussey, and G.R. Stafford, “Electrodeposition of Titanium-Aluminum Alloys from Lewis Acidic AlCl3-1-Ethyl-3-methylimidazolium Chloride Melts,” J. of Electrochem. Soc., 150 (2003), pp. 234–243.

    Google Scholar 

  18. C.J. Smit and T.P.J. Peters, “Electrodeposition of Aluminum at Near Ambient Temperature,” Light Metals 1986, ed. R.E. Miller (Warrendale, PA: TMS, 1986), pp. 253–260.

    Google Scholar 

  19. J.H. Conner and A. Brenner, “Electrodeposition of Metals from Organic Solutions,” J. Electrochem. Soc., 99 (1952), pp. 234–241.

    Google Scholar 

  20. L. Lamin, C.G. Perrault, and J. Reby, “Coelectrode-position of Aluminum and Cadmium from Aqueous Sulphate Solutions,” Journal of Applied Electrochemistry, 13 (1983), pp. 565–572.

    Article  Google Scholar 

  21. T.P. Wier, Jr. and F.H. Hurley, “Electrodeposition of Aluminum,” U.S. patent 2,446,349 (1948).

  22. C.L. Hussey, “Room Temperature Molten Salt Systems,” Advances in Molten Salt Chemistry, ed. G. Mamantov, 5 (1983), p. 185.

    CAS  Google Scholar 

  23. B.J. Welch and R.A. Osteryoung, “Electrochemical Studies in Low Temperature Molten Salt Systems Containing Aluminum Chloride,” J. Electrochem. Soc., 118 (1981), pp. 455–466.

    CAS  Google Scholar 

  24. R.G. Reddy, “Emerging Technologies in Extraction and Processing of Metals,” Metallurgical and Materials Transactions B, 34B (2) (2003), pp. 149–150.

    Google Scholar 

  25. M. Kondo, H. Maeda, and M. Mizuguchi, “The Production of High-Purity Aluminum in Japan,” Journal of Metals, 42 (11) (1990), pp. 36–37.

    CAS  Google Scholar 

  26. S.K. Kim and R.G. Reddy, “Recent Advances in Electrodeposition Technology,” Journal of the Korean Institute of Surface Engineering, 34 (2001), pp. 554–555.

    Google Scholar 

  27. V. Kamavaram, D. Mantha, and R.G. Reddy, “Electrorefining of Aluminum Alloy in Ionic Liquids at Low Temperatures,” Journal of Mining and Metallurgy, 39B (1–2) (2003), pp. 43–58.

    Google Scholar 

  28. Venkat Kamavaram and Ramana G. Reddy, “Recycling of Al-MMC Ionic Liquids at or near Room Temperature,” Ninth Annual International Conference on Composites Engineering, ed. D. Hui, (San Diego, California: International Community for Composites Engineering and College of Engineering, University of New Orleans, 2002), pp. 359–360.

    Google Scholar 

  29. H.S. Ray, R. Sridhar, and K.P. Avraham, Extraction of Nonferrous Metals (New Delhi, India: Affiliated East-West Press PVT Ltd., (1992), pp. 261–310.

    Google Scholar 

  30. M. Galova, “Electrodeposition of Aluminum from Organic Aprotic Solvents,” Surface Technology, 11 (1980), pp. 357–389.

    Article  CAS  Google Scholar 

  31. S. Simanavicius, “Electrodeposition of Aluminum in the Presence of Some Chromium Compounds,” Chemija, (3) (1990), p. 178.

  32. D.B. Keyes et al., Ind. Eng. Chem., 20 (1928), p. 1068.

    Article  CAS  Google Scholar 

  33. J.J. Auborn and Y.L. Barberio, “An Ambient Temperature Secondary Aluminum Electrode: Its Cycling Rates and its Cycling Efficiencies,” J. Electrochem. Soc., 132 (1985), p. 598.

    Article  CAS  Google Scholar 

  34. S.D. Jones and G.E. Blomgren, “Low Temperature Molten Salt Electrolytes Based on Aralkyl Quaternary or Ternary Onium Salts,” J. Electrochem. Soc., 136, (1989), p. 424.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact R.G. Reddy, the University of Alabama, Department of Metallurgical and Materials Engineering, Center for Green Manufacturing, A-129 Bevill Building, 126 Seventh Avenue, Tuscaloosa, Alabama 35487; (205) 348-4246; fax (205) 348-2164; e-mail rreddy@coe.eng.ua.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Kamavarum, V. & Reddy, R.G. New electrolytes for aluminum production: Ionic liquids. JOM 55, 54–57 (2003). https://doi.org/10.1007/s11837-003-0211-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-003-0211-y

Keywords

Navigation