Skip to main content
Log in

Synaptogenèses normales, pathologiques et amendables dans le cortex cérébral

Normal, pathological and mendable synaptogenesis in the cerebral cortex

  • Neurosciences / Neurosciences
  • Published:
PSN

Résumé

Dans le cortex cérébral, les diverses phases des synaptogenèses coïncident avec les étapes majeures des maturations des fonctions sensorielles, motrices et cognitives. L’évolution du cortex cérébral, pendant 300 millions d’années, a sélectionné des réseaux de gènes contrôlant le développement robuste des réseaux synaptiques, tout en permettant à l’environnement de les raffiner en permanence, dans une fenêtre de variabilité elle-même contrôlée génétiquement. L’inscription épigénétique permanente de l’histoire de l’individu dans l’affinage final de ses circuits synaptiques dure toute la vie, avec un effet maximum pendant les périodes critiques du développement. Cette « ouverture épigénétique » de l’histoire individuelle, maximale dans le cortex humain, est la source de la très grande créativité cognitive et culturelle de notre espèce, et peut-être aussi de ses fragilités psychiques. Le séquençage et l’analyse du génome humain montrent que des ensembles de mutations affectant les voies de signalisations synaptiques sont associés à des maladies psychiatriques. Les neurobiologistes savent manipuler l’ouverture et la fermeture des périodes critiques de synaptogenèse au cours du développement et commencent à le faire aussi dans le cortex cérébral adulte. Ces manipulations épigénétiques des synapses pourront-elles « réparer » les circuits synaptiques pathologiquement altérés?

Abstract

In the cerebral cortex, different phases of synaptogenesis coincide with the main maturation stages of sensory, motor, and cognitive abilities. Early in development, synapses are generated and differentiated under the control of robust mechanisms governed by genes. Then, during multiple critical periods, extending from the end of gestation to the end of puberty, the way in which the synaptic structure develops is highly dependent upon the quality of the environment. The duration of these critical periods increases significantly through evolution. This “epigenetic opening” of synaptogenesis to the environment is maximal in the human cerebral cortex. It is the source of the exceptional cognitive adaptability and cultural creativity of our species. It is also, possibly, one of our multiple psychological fragilities. Analysis of the human genome reveals that mutations in genes related to synaptic structure and signalisation are linked to many psychiatric disorders. Neurobiologists are able to manipulate the critical periods of synaptogenesis during development and have begun to do so in the adult cerebral cortex. These epigenetic manipulations might allow us to restore synaptic plasticity and, potentially, repair the disorganised synaptic circuits observed in psychiatric pathologies. You said epigenetic manipulations?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Alonso M, Ortega-Pérez I, Grubb MS, et al. (2008) Experience-induced regulation of constitutive neurogenesis in the adult olfactory system. Submitted

  2. Anderson SA, Classey JD, Condé F, et al. (1995) Synchroneous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of macaque prefrontal cortex. Neuroscience 67(1): 7–22

    Article  PubMed  CAS  Google Scholar 

  3. Benavides-Piccione R, Ballesteros-Yáñez I, DeFelipe J, Yuste R (2002) Cortical area and species differences in dendritic spine morphology. J Neurocytol 31(3–5): 337–346

    Article  PubMed  Google Scholar 

  4. Berardi N, Pizzorusso T, Maffei L (2000) Critical periods during sensory development. Curr Opin Neurobiol 10(1): 138–145

    Article  PubMed  CAS  Google Scholar 

  5. Bhardwaj RD, Curtis MA, Spalding KL, et al. (2006) Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci (USA) 103(33): 12564–12568

    Article  CAS  Google Scholar 

  6. Bourgeois JP (1997) Synaptogenesis, heterochrony and epigenesis in the mammalian neocortex. Acta Pædiatr (Suppl 422): 27–33

  7. Bourgeois JP (2001) Synaptogenesis in the neocortex of the newborn. In: Nelson C.A, Luciana M. (eds) Handbook of developmental cognitive neuroscience. Cambridge, Mass. A Bradford Book. The MIT Press, 23–34

    Google Scholar 

  8. Bourgeois JP (2002) Synaptogenesis in the neocortex of the newborn: the ultimate frontier for individuation? In: Lagercrantz H, Hanson M, Evrard P, Rodeck C. (eds) The newborn brain. Neuroscience and clinical applications, Cambridge: Cambridge University Press, Chapter 5: 91–113

    Google Scholar 

  9. Bourgeois JP (2003) Le développement de la connectivité cérébrale: étape ultime de l’individuation? In: Changeux JP. (ed) Gènes et culture, Paris: Éditions Odile Jacob, 93–115

    Google Scholar 

  10. Bourgeois JP (2005) Synaptogenèses et épigenèses cérébrales. Médecine-Science 21: 428–433

    Google Scholar 

  11. Bourgeois ML (2006) Les schizophrénies, Paris: PUF. Que sais-je? No 3491

    Google Scholar 

  12. Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity, Berlin: Springer

    Google Scholar 

  13. Burkhalter A, Bernardo KL, Charles V (1993) Development of local circuits in human visual cortex. J Neurosci 13(5): 1916–1931

    PubMed  CAS  Google Scholar 

  14. Cantor RM, Geschwind DH (2008) Schizophrenia: Genome, interrupted. Neuron 58: 165–167

    Article  PubMed  CAS  Google Scholar 

  15. Durand C.M, Chaste P, Fauchereau F, et al. (2008) Identification d’une voie synaptique liée à l’autisme. Médecine-Science 24(1): 25–28

    Google Scholar 

  16. Enard W, Khaitovich P, Klose J, et al. (2002) Intra-and interspecific variation in primate gene expression patterns. Science 296: 340–343

    Article  PubMed  CAS  Google Scholar 

  17. Frankle WG, Lerma J, Laruelle M (2003) The synaptic hypothesis of schizophrenia. Neuron 39: 205–216

    Article  PubMed  CAS  Google Scholar 

  18. Granier-Deferre C, Schaal B, De Casper AJ (2004) Prémices fœtales de la cognition. In: Lécuyer R. (ed.) Le développement du nourrison, Paris: Dunod, 59–94

    Google Scholar 

  19. Hensch TK (2003) Controling the critical period. Neurosci Res 47: 17–22

    Article  PubMed  Google Scholar 

  20. Hensch TK (2004) Critical period regulation. Ann Rev Neurosci 27: 549–579

    Article  PubMed  CAS  Google Scholar 

  21. Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387: 167–178

    Article  PubMed  CAS  Google Scholar 

  22. Kozorovitskiy Y, Hughes M, Lee K, Gould E (2006) Fatherhood affects dendritic spines and vasopressin V1a receptors in the primate prefrontal cortex. Nat Neurosci 9(9): 1094–1095

    Article  PubMed  CAS  Google Scholar 

  23. Krubitzer L (2007) The magnificent compromise: cortical field evolution in mammals. Neuron 56: 201–208

    Article  PubMed  CAS  Google Scholar 

  24. Linkenhoker BA, Knudsen EI (2002) Incremental training increases the plasticity of the auditory space map in adult barn owls. Nature 419: 293–296

    Article  PubMed  CAS  Google Scholar 

  25. Low NC, Hardy J (2007) What is a schizophrenic mouse? Neuron 54: 348–402

    Article  PubMed  CAS  Google Scholar 

  26. Mirnics K, Middletown FA, Marquez A, et al. (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28: 53–67

    Article  PubMed  CAS  Google Scholar 

  27. Nimchinsky EA, Gilissen E, Allman JM, et al. (1999) A neuronal morphologic type unique to humans and great apes. Proc Natl Acad Sci (USA) 96(9): 5268–5273

    Article  CAS  Google Scholar 

  28. Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 9: 697–709

    Article  Google Scholar 

  29. Paquette V, Lévesque J, Mensour B, et al. (2003) Change the mind and you change the brain: effects of cognitive-behavioral therapy on the neural correlates of spider phobia. Neuroimage 18: 401–409

    Article  PubMed  Google Scholar 

  30. Persico AM, Bourgeron T (2006) Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends in Neurosci 29(7): 349–358

    Article  CAS  Google Scholar 

  31. Preuss TM, Cáceres M, Oldham MC, Geschwind DH (2004) Human brain evolution: insights from microarrays. Nat Rev Genet 5: 850–860

    Article  PubMed  CAS  Google Scholar 

  32. Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9: 26–35

    Article  PubMed  CAS  Google Scholar 

  33. Sanders AR, Duan J, Levinson DF, et al. (2008) No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am J Psychiatr 165(4): 497–506

    Article  PubMed  Google Scholar 

  34. Schneider T, Turczak J, Przewlocki R (2006) Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: issues for a therapeutic approach in autism. Neuropsychopharmacology 31: 36–46

    PubMed  CAS  Google Scholar 

  35. Sullivan R, Wilson DA, Feldon J, et al. (2006) The International Society for Developmental Psychobiology annual meeting symposium: impact of early life experiences on brain and behavioral development. Dev Psychobiol 48(7): 583–602

    Article  PubMed  CAS  Google Scholar 

  36. Valor LM, Charlesworth P, Humphreys L, et al. (2007) Network activity independent coordinated gene expression program for synapse assembly. Proc Natl Acad Sci (USA) 104: 4658–4663

    Article  CAS  Google Scholar 

  37. Vetencourt JFM, Sale A, Viegi A, et al. (2008) The antidepressant Fluoxetine restores plasticity in the adult visual cortex. Science 320: 385–388

    Article  Google Scholar 

  38. White EL (2007) Reflections on the specificity of synaptic connections. Brain Res Rev 55(2): 422–429

    Article  PubMed  Google Scholar 

  39. Wojtowicz WM, Wu W, Abre I, et al. (2007) A vast repertoire of DSCAM binding specificities arises from modular interactions of variables Ig domains. Cell 130: 1134–1145

    Article  PubMed  CAS  Google Scholar 

  40. Zecevic N (1998) Synaptogenesis in Layer I of the human cerebral cortex in the first half of gestation. Cereb Cortex 8: 245–252

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -P. Bourgeois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgeois, J.P. Synaptogenèses normales, pathologiques et amendables dans le cortex cérébral. Psychiatr Sci Hum Neurosci 6, 124–136 (2008). https://doi.org/10.1007/s11836-008-0065-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11836-008-0065-z

Mots clés

Keywords

Navigation