Skip to main content
Log in

L’apport de la neuro-imagerie dans la maladie d’Alzheimer

The role of neuroimaging in Alzheimer’s disease

  • Imagerie / Imaging
  • Published:
PSN

Résumé

Aujourd’hui, le rôle de la neuro-imagerie dans le diagnostic de la maladie d’Alzheimer (MA) dépasse le traditionnel rôle de diagnostic d’exclusion d’autres formes de démence comme les démences neurochirurgicales. Les objectifs actuels sont de contribuer au diagnostic précoce de la MA. Le diagnostic précoce inclut la reconnaissance des stades prédémentiels, comme le mild cognitive impairment (MCI), ou des sujets à haut risque de développer la MA. Le diagnostic précoce permettrait également d’instaurer, le plus tôt possible, les thérapeutiques innovantes futures. Dans cet article, nous allons présenter le rôle moderne de la neuro-imagerie dans la MA. L’imagerie par résonance magnétique (IRM) structurelle peut détecter et suivre l’évolution de l’atrophie temporale médiale qui est un marqueur du processus pathologique. Les techniques IRM et les méthodes d’analyse d’images nouvelles peuvent détecter des anomalies discrètes de la diffusion, la perfusion ou du métabolisme cérébral qui fournissent de nouveaux outils d’évaluation du processus pathologique. De nouveaux ligands sont aussi disponibles pour la caméra à émission de positrons.

Abstract

Today, the role of neuroimaging in the diagnosis of Alzheimer’s disease (AD) extends beyond its traditional role of excluding other conditions such as neurosurgical lesions. Modern challenges for neuroimaging techniques aim to contribute to the early diagnosis of AD. Early diagnosis includes recognition of pre-demented conditions, such as people with mild cognitive impairment (MCI) or with high risk of developing AD. In addition, early diagnosis would allow early treatment using currently available therapies or new therapies in the future. In this article, we will present the modern role of neuroimaging in AD. Structural MRI can detect and follow the time course of medial temporal lobe atrophy as a surrogate marker for the pathological process. New MRI techniques and image analysis software can detect subtle brain diffusion, perfusion or metabolic changes thus providing new tools for studying the pathological process. New ligands are also available for studies using tracers and positron emission tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Baron JC, Chetelat G, Desgranges B, et al. (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 14: 298–309

    Article  PubMed  CAS  Google Scholar 

  2. Bobinski M, de Leon MJ, Convit A, et al. (1999) MRI of entorhinal cortex in mild Alzheimer’s disease. Lancet 353: 38–40

    Article  PubMed  CAS  Google Scholar 

  3. Bookheimer SY, Strojwas MH, Cohen MS, et al. (2000) Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 343: 450–456

    Article  PubMed  CAS  Google Scholar 

  4. Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16: 271–278 (discussion 278–84)

    Article  PubMed  CAS  Google Scholar 

  5. Chételat G, Landeau B, Eustache F, et al. (2005) Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. Neuroimage 27: 934–946

    Article  PubMed  Google Scholar 

  6. Chupin M, Mukuna-Bantumbakulu AR, Hasboun D, et al. (2007) Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer’s disease. Neuroimage 34: 996–1019

    Article  PubMed  Google Scholar 

  7. Colliot O, Chételat G, Chupin M, et al. (2008) Discrimination between Alzheimer disease, mild cognitive impairment and normal aging by using automated segmentation of the hippocampus. Radiology In Press

  8. Delacourte A, David JP, Sergeant N, et al. (1999) The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52: 1158–1165

    PubMed  CAS  Google Scholar 

  9. Deweer B, Lehericy S, Pillon B, et al. (1995) Memory disorders in probable Alzheimer’s disease: the role of hippocampal atrophy as shown with MRI. J Neurol Neurosurg Psychiatry 58: 590–597

    Article  PubMed  CAS  Google Scholar 

  10. Dubois B, Feldman HH, Jacova C, et al. (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6: 734–746

    Article  PubMed  Google Scholar 

  11. Fama R, Sullivan EV, Shear PK, et al. (1997) Selective cortical and hippocampal volume correlates of mattis dementia rating scale in Alzheimer’s disease. Arch Neurol 54: 719–728

    PubMed  CAS  Google Scholar 

  12. Fan Y, Batmanghelich N, Clark CM, Davatzikos C (2008) Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 39: 1731–1743

    Article  PubMed  Google Scholar 

  13. Fox NC, Crum WR, Scahill RI, et al. (2001) Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 358: 201–205

    Article  PubMed  CAS  Google Scholar 

  14. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101: 4637–4642

    Article  PubMed  CAS  Google Scholar 

  15. Hashimoto M, Kitagaki H, Imamura T, et al. (1998) Medial temporal and whole-brain atrophy in dementia with Lewy bodies: a volumetric MRI study. Neurology 51: 357–362

    PubMed  CAS  Google Scholar 

  16. Herholz K, Salmon E, Perani D, et al. (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 17: 302–316

    Article  PubMed  CAS  Google Scholar 

  17. Jack CR Jr, Petersen RC, O’Brien PC, Tangalos EG (1992) MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42: 183–188

    PubMed  Google Scholar 

  18. Jack CR. Jr, Petersen RC, Xu Y, et al. (2000) Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55: 484–489

    PubMed  Google Scholar 

  19. Jack CR. Jr, Garwood M, Wengenack TM, et al. (2004) In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent. Magn Reson Med 52: 1263–1271

    Article  PubMed  Google Scholar 

  20. Jagust W (2004) Molecular neuroimaging in Alzheimer’s disease. NeuroRx 1: 206–212

    Article  PubMed  Google Scholar 

  21. Kalus P, Slotboom J, Gallinat J, et al. (2006) Examining the gateway to the limbic system with diffusion tensor imaging: the perforant pathway in dementia. Neuroimage 30: 713–720

    Article  PubMed  Google Scholar 

  22. Kantarci K, Petersen RC, Boeve BF, et al. (2004) 1H MR spectroscopy in common dementias. Neurology 63: 1393–1398

    PubMed  CAS  Google Scholar 

  23. Kantarci K, Petersen RC, Boeve BF, et al. (2005) DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 64: 902–904

    PubMed  CAS  Google Scholar 

  24. Kaye JA, Swihart T, Howieson D, et al. (1997) Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology 48: 1297–1304

    PubMed  CAS  Google Scholar 

  25. Killiany RJ, Gomez-Isla T, Moss M, et al. (2000) Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Ann Neurol 47: 430–439

    Article  PubMed  CAS  Google Scholar 

  26. Laakso MP, Partanen K, Riekkinen P, et al. (1996) Hippocampal volumes in Alzheimer’s disease, Parkinson’s disease with and without dementia, and in vascular dementia: An MRI study. Neurology 46: 678–681

    PubMed  CAS  Google Scholar 

  27. Lehéricy S, Baulac M, Chiras J, et al. (1994) Amygdalohippocampal MR volume measurements in the early stages of Alzheimer disease. AJNR Am J Neuroradiol 15: 929–937

    PubMed  Google Scholar 

  28. Lerch JP, Pruessner JC, Zijdenbos A, et al. (2005) Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex 15: 995–1001

    Article  PubMed  Google Scholar 

  29. Nordberg A (2007) Amyloid imaging in Alzheimer’s disease. Curr Opin Neurol 20: 398–402

    Article  PubMed  CAS  Google Scholar 

  30. Petersen RC, Jack CR. Jr, Xu YC, et al. (2000) Memory and MRI-based hippocampal volumes in aging and AD. Neurology 54: 581–587

    PubMed  CAS  Google Scholar 

  31. Sandson TA, O’Connor M, Sperling RA, et al. (1996) Noninvasive perfusion MRI in Alzheimer’s disease: a preliminary report. Neurology 47: 1339–1342

    PubMed  CAS  Google Scholar 

  32. Scheltens P, Fox N, Barkhof F, De Carli C (2002) Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol 1: 13–21

    Article  PubMed  Google Scholar 

  33. Small SA, Perera GM, DeLaPaz R, et al. (1999) Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Ann Neurol 45: 466–472

    Article  PubMed  CAS  Google Scholar 

  34. de Toledo-Morrell L, Dickerson B, Sullivan MP, et al. (2000) Hemispheric differences in hippocampal volume predict verbal and spatial memory performance in patients with Alzheimer’s disease. Hippocampus 10: 136–142

    Article  PubMed  Google Scholar 

  35. Xu Y, Jack CR. Jr, O’Brien PC, et al. (2000) Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 54: 1760–1767

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Colliot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colliot, O., Chupin, M., Sarazin, M. et al. L’apport de la neuro-imagerie dans la maladie d’Alzheimer. Psychiatr Sci Hum Neurosci 6, 68–75 (2008). https://doi.org/10.1007/s11836-008-0058-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11836-008-0058-y

Mots clés

Keywords

Navigation