Skip to main content
Log in

Computation and Optimization of BESS in the Modeling of Renewable Energy Based Framework

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Incorporating Battery Energy Storage Systems (BESS) into renewable energy configurations offers numerous apparent advantages. Nonetheless, to fully capitalize on these advantages, it is imperative to implement management strategies that facilitate optimal system performance. Various approaches and methods can be employed to optimize the functionality of BESS within renewable energy systems (RES), encompassing specific dispatch goals as well as financial, technical, or hybrid objectives. These optimization methods are categorized into three primary groups: directed search-based (DSB), probabilistic, and rule-based strategies. Historically, research has heavily focused on tailoring systems based on the renewable energy sources for specific purposes, such as distributed generation (DG). This investigation not only offers a comprehensive overview of battery management measures but also assesses these endeavors in terms of their alignment with application objectives and the chosen optimization strategy. This approach unveils connections between distinct optimization goals and preferred strategies. The findings reveal that DSB approaches and control strategies, commonly employed for technical objectives, are more likely to succeed in addressing financial goals. Moreover, the extent to which a problem can be analytically defined emerges as a critical consideration. Upon comparing the merits and demerits of different reported optimization methodologies, it becomes evident that hybrid approaches, amalgamating the strengths of various optimization techniques, will increasingly shape future operational procedures. This study not only equips researchers with valuable insights into viable optimization strategies for forthcoming generation applications but also provides a cutting-edge overview of battery applications and optimization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ADALINE:

Adaptive Linear Neuron

ADP:

Approximate Dynamic Programming

AI:

Artificial Intelligence

BEMS:

Battery Energy Management Systems

BMS:

Battery Management Systems

CAES:

Compressed Air Energy Storage

DR:

Demand Response

ESS:

Energy Storage Systems

EV:

Electric Vehicle

FLC:

Fuzzy Logic Controller

GA:

Genetic Algorithms

GAMS:

General Algebraic Modelling System

HESS:

Hybrid ESS

HH:

Hyper-Heuristic

HRES:

Hybrid Renewable Energy System

IP:

Integer Programming

LP:

Linear Programming

MILP:

Mixed-Integer Linear Programming

ML:

Machine Learning

MPC:

Model Predictive Control

NaS:

Sodium-Sulfur

NLP:

Nonlinear Programming

NSGA:

Non-Dominated Sorting Genetic Algorithm

OLTC:

On-Load Tap Changers

PSO:

Particle Swarm Optimization

PV:

Photovoltaic

QP:

Quadratic Programming

RC:

Resistor–Capacitor

SDP:

Stochastic Dynamic Programming

References

  1. Suberu YM, Mustafa MW, Bashir N (2014) Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renew Sustain Energy Rev 35:499–514. https://doi.org/10.1016/j.rser.2014.04.009

    Article  Google Scholar 

  2. Luo X, Wang J, Dooner M, Clarke J (2015) Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 137:511–536. https://doi.org/10.1016/j.apenergy.2014.09.081

    Article  Google Scholar 

  3. Toledo OM, Oliveira Filho D, Diniz ASAC (2010) Distributed photovoltaic generation and energy storage systems: a review. Renew Sustain Energy Rev 14:506–511. https://doi.org/10.1016/j.rser.2009.08.007

    Article  Google Scholar 

  4. Tan X, Li Q, Wang H (2013) Advances and trends of energy storage technology in Microgrid. Int J Electr Power Energy Syst 44:179–191. https://doi.org/10.1016/j.ijepes.2012.07.015

    Article  Google Scholar 

  5. Mahto T, Mukherjee V (2015) Energy storage systems for mitigating the variability of isolated hybrid power system. Renew Sustain Energy Rev 51:1564–1577. https://doi.org/10.1016/j.rser.2015.07.012

    Article  Google Scholar 

  6. Berrada A, Loudiyi K (2016) Operation, sizing, and economic evaluation of storage for solar and wind power plants. Renew Sustain Energy Rev 59:1117–1129

    Article  Google Scholar 

  7. Divya KC, Østergaard J (2009) Battery energy storage technology for power systems—an overview. Electr Power Syst Res 79(3):511–520. https://doi.org/10.1016/j.epsr.2008.09.017

    Article  Google Scholar 

  8. Das T, Krishnan V, McCalley JD (2015) Assessing the benefits and economics of bulk energy storage technologies in the power grid. Appl Energy 139:104–118. https://doi.org/10.1016/j.apenergy.2014.11.017

    Article  Google Scholar 

  9. Del Rosso AD, Eckroad SW (2014) Energy storage for relief of transmission congestion. IEEE Trans Smart Grid 5(3):1138–1146. https://doi.org/10.1109/TSG.2013.2277411

    Article  Google Scholar 

  10. Stephan A, Battke B, Beuse MD, Clausdeinken JH, Schmidt TS (2016) Limiting the public cost of stationary battery deployment by combining applications. Nat Energy 1:16079. https://doi.org/10.1038/nenergy.2016.79

    Article  Google Scholar 

  11. Saxena V, Kumar N, Nangia U (2022) recent trends in the optimization of renewable distributed generation: a review. Ingen Invest 42(3):e97702. https://doi.org/10.15446/ing.investig.97702

    Article  Google Scholar 

  12. Poullikkas A (2013) A comparative overview of large-scale battery systems for electricity storage. Renew Sustain Energy Rev 27:778–788. https://doi.org/10.1016/j.rser.2013.07.017

    Article  Google Scholar 

  13. Lawder MT, Suthar B, Northrop PWC, De S, Hoff CM, Leitermann O et al (2014) Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications. Proc IEEE 102(6):1014–1030. https://doi.org/10.1109/JPROC.2014.2317451

    Article  Google Scholar 

  14. Dai H, Jiang B, Hu X, Lin X, Wei X, Pecht M (2020) Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2020.110480

    Article  Google Scholar 

  15. Zakeri B, Syri S (2015) Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sustain Energy Rev 42:569–596. https://doi.org/10.1016/j.rser.2014.10.011

    Article  Google Scholar 

  16. Duffner F, Wentker M, Greenwood M, Leker J (2020) Battery cost modeling: a review and directions for future research. Renew Sustain Energy Rev 127:109872. https://doi.org/10.1016/j.rser.2020.109872

    Article  Google Scholar 

  17. Sani SB, Celvakumaran P, Ramachandaramurthy VK, Walker S, Alrazi B, Jia Y et al (2020) Energy storage system policies: way forward and opportunities for emerging economies. J Energy Storage 32:101902. https://doi.org/10.1016/j.est.2020.101902

    Article  Google Scholar 

  18. Díaz-González F, Sumper A, Gomis-Bellmunt O, Villafáfila-Robles R (2012) A review of energy storage technologies for wind power applications. Renew Sustain Energy Rev 16(4):2154–2171. https://doi.org/10.1016/j.rser.2012.01.029

    Article  Google Scholar 

  19. Zhao H, Wu Q, Hu S, Xu H, Rasmussen CN (2015) Review of energy storage system for wind power integration support. Appl Energy 137:545–553. https://doi.org/10.1016/j.apenergy.2014.04.103

    Article  Google Scholar 

  20. de Siqueira LMS, Peng W (2021) Control strategy to smooth wind power output using battery energy storage system: a review. J Energy Storage 35:102252. https://doi.org/10.1016/j.est.2021.102252

    Article  Google Scholar 

  21. Barra PHA, de Carvalho WC, Menezes TS, Fernandes RAS, Coury DV (2021) A review on wind power smoothing using high-power energy storage systems. Renew Sustain Energy Rev 137:110455. https://doi.org/10.1016/j.rser.2020.110455

    Article  Google Scholar 

  22. Lamsal D, Sreeram V, Mishra Y, Kumar D (2019) Output power smoothing control approaches for wind and photovoltaic generation systems: a review. Renew Sustain Energy Rev 113:109245. https://doi.org/10.1016/j.rser.2019.109245

    Article  Google Scholar 

  23. Akram U, Nadarajah M, Shah R, Milano F (2020) A review on rapid responsive energy storage technologies for frequency regulation in modern power systems. Renew Sustain Energy Rev 120:109626. https://doi.org/10.1016/j.rser.2019.109626

    Article  Google Scholar 

  24. Dai H, Jiang B, Hu X, Lin X, Wei X, Pecht M (2021) Advanced battery management strategies for a sustainable energy future: multilayer design concepts and research trends. Renew Sustain Energy Rev 138:110480. https://doi.org/10.1016/j.rser.2020.110480

    Article  Google Scholar 

  25. Hoppmann J, Volland J, Schmidt TS, Hoffmann VH (2014) The economic viability of battery storage for residential solar photovoltaic systems—a review and a simulation model. Renew Sustain Energy Rev 39:1101–1118. https://doi.org/10.1016/j.rser.2014.07.068

    Article  Google Scholar 

  26. Coppez G, Chowdhury S, Chowdhury SP (2010) Review of battery storage optimisation in distributed generation. In: 2010 Joint international conference on power electronics, drives and energy systems & 2010 power, India, pp 1–6. https://doi.org/10.1109/PEDES.2010.5712406

  27. Hajiaghasi S, Salemnia A, Hamzeh M (2019) Hybrid energy storage system for microgrids applications: a review. J Energy Storage 21:543–570. https://doi.org/10.1016/j.est.2018.12.017

    Article  Google Scholar 

  28. Zhang L, Hu X, Wang Z, Ruan J, Ma C, Song Z et al (2021) Hybrid electrochemical energy storage systems: an overview for smart grid and electrified vehicle applications. Renew Sustain Energy Rev 139:110581. https://doi.org/10.1016/j.rser.2020.110581

    Article  Google Scholar 

  29. Naval N, Yusta JM (2021) Virtual power plant models and electricity markets—a review. Renew Sustain Energy Rev 149:111393. https://doi.org/10.1016/j.rser.2021.111393

    Article  Google Scholar 

  30. Lee JW, Haram MHSM, Ramasamy G, Thiagarajah SP, Ngu EE, Lee YH (2021) Technical feasibility and economics of repurposed electric vehicles batteries for power peak shaving. J Energy Storage 40:102752. https://doi.org/10.1016/j.est.2021.102752

    Article  Google Scholar 

  31. Zhang Z, Ding T, Zhou Q, Sun Y, Qu M, Zeng Z et al (2021) A review of technologies and applications on versatile energy storage systems. Renew Sustain Energy Rev 148:111263. https://doi.org/10.1016/j.rser.2021.111263

    Article  Google Scholar 

  32. Tan KM, Babu TS, Ramachandaramurthy VK, Kasinathan P, Solanki SG, Raveendran SK (2021) Empowering smart grid: a comprehensive review of energy storage technology and application with renewable energy integration. J Energy Storage 39:102591. https://doi.org/10.1016/j.est.2021.102591

    Article  Google Scholar 

  33. Bidram A, Davoudi A (2012) Hierarchical structure of microgrids control system. IEEE Trans Smart Grid 3:1963–1976. https://doi.org/10.1109/TSG.2012.2197425

    Article  Google Scholar 

  34. Morstyn T, Hredzak B, Agelidis VG (2016) Control strategies for microgrids with distributed energy storage systems: an overview. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2016.2637958

    Article  Google Scholar 

  35. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334(80):928–935. https://doi.org/10.1126/science.1212741

    Article  Google Scholar 

  36. Ferreira HL, Garde R, Fulli G, Kling W, Lopes JP (2013) Characterisation of electrical energy storage technologies. Energy 53:288–298. https://doi.org/10.1016/j.energy.2013.02.037

    Article  Google Scholar 

  37. Jenkins DP, Fletcher J, Kane D (2008) Lifetime prediction and sizing of lead–acid batteries for microgeneration storage applications. IET Renew Power Gener 2:191–200. https://doi.org/10.1049/iet-rpg:20080021

    Article  Google Scholar 

  38. Dogger JD, Roossien B, Nieuwenhout FDJ (2011) Characterization of Li-ion batteries for intelligent management of distributed grid-connected storage. IEEE Trans Energy Convers 26:256–263. https://doi.org/10.1109/TEC.2009.2032579

    Article  Google Scholar 

  39. Hatta T (2012) Applications of sodium-sulfur batteries. In: Transmission and distribution conference and exposition (T&D), 2012 IEEE PES, pp 1–3. https://doi.org/10.1109/TDC.2012.6281442

  40. Stan AI, Swierczynski M, Stroe DI, Teodorescu R, Andreasen SJ (2014) Lithium ion battery chemistries from renewable energy storage to automotive and back-up power applications: an overview. In: 2014 International conference on optimization of electrical and electronic equipment (OPTIM), pp 713–720. https://doi.org/10.1109/OPTIM.2014.6850936

  41. Baccino F, Marinelli M, Nørgård P, Silvestro F (2014) Experimental testing procedures and dynamic model validation for vanadium redox flow battery storage system. J Power Sources 254:277–286. https://doi.org/10.1016/j.jpowsour.2013.12.078

    Article  Google Scholar 

  42. Schreiber M, Harrer M, Whitehead A, Bucsich H, Dragschitz M, Seifert E et al (2012) Practical and commercial issues in the design and manufacture of vanadium flow batteries. J Power Sources 206:483–489. https://doi.org/10.1016/j.jpowsour.2010.12.032

    Article  Google Scholar 

  43. Li Y, Sun L, Cao L, Bao J, Skyllas-Kazacos M (2021) Dynamic model based membrane permeability estimation for online SOC imbalances monitoring of vanadium redox flow batteries. J Energy Storage 39:102688. https://doi.org/10.1016/j.est.2021.102688

    Article  Google Scholar 

  44. Liu W, Placke T, Chau KT (2022) Overview of batteries and battery management for electric vehicles. Energy Rep 8:4058–4084. https://doi.org/10.1016/j.egyr.2022.03.016

    Article  Google Scholar 

  45. Zou C, Zhang L, Hu X, Wang Z, Wik T, Pecht M (2018) A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors. J Power Sources 390:286–296. https://doi.org/10.1016/j.jpowsour.2018.04.033

    Article  Google Scholar 

  46. Wang Y, Tian J, Sun Z, Wang L, Xu R, Li M et al (2020) A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renew Sustain Energy Rev 131:110015. https://doi.org/10.1016/j.rser.2020.110015

    Article  Google Scholar 

  47. Shahjalal M, Shams T, Islam ME, Alam W, Modak M, Hossain SB et al (2021) A review of thermal management for Li-ion batteries: prospects, challenges, and issues. J Energy Storage 39:102518. https://doi.org/10.1016/j.est.2021.102518

    Article  Google Scholar 

  48. Nguyen TA, Crow ML, Elmore AC (2015) Optimal sizing of a vanadium redox battery system for microgrid systems. IEEE Trans Sustain Energy 6:729–737. https://doi.org/10.1109/TSTE.2015.2404780

    Article  Google Scholar 

  49. Cervone A, Carbone G, Santini E, Teodori S (2016) Optimization of the battery size for PV systems under regulatory rules using a Markov-Chains approach. Renew Energy 85:657–665. https://doi.org/10.1016/j.renene.2015.07.007

    Article  Google Scholar 

  50. Rodrigues EMG, Osório GJ, Godina R, Bizuayehu AW, Lujano-Rojas JM, Matias JCO et al (2015) Modelling and sizing of NaS (sodium sulfur) battery energy storage system for extending wind power performance in Crete Island. Energy 90:1606–1617. https://doi.org/10.1016/j.energy.2015.06.116

    Article  Google Scholar 

  51. Aaslid P, Geth F, Korpås M, Belsnes MM, Fosso OB (2020) Non-linear charge-based battery storage optimization model with bi-variate cubic spline constraints. J Energy Storage 32:101979. https://doi.org/10.1016/j.est.2020.101979

    Article  Google Scholar 

  52. Li X (2012) Fuzzy adaptive Kalman filter for wind power output smoothing with battery energy storage system. IET Renew Power Gener 6:340–347. https://doi.org/10.1049/iet-rpg.2011.0177

    Article  Google Scholar 

  53. Eghtedarpour N, Farjah E (2012) Control strategy for distributed integration of photovoltaic and energy storage systems in DC micro-grids. Renew Energy 45:96–110. https://doi.org/10.1016/j.renene.2012.02.017

    Article  Google Scholar 

  54. Fares RL, Webber ME (2014) A flexible model for economic operational management of grid battery energy storage. Energy 78:768–776. https://doi.org/10.1016/j.energy.2014.10.072

    Article  Google Scholar 

  55. Lee SJ, Kim JH, Kim CH, Kim SK, Kim ES, Kim DU et al (2016) Coordinated control algorithm for distributed battery energy storage systems for mitigating voltage and frequency deviations. IEEE Trans Smart Grid 7:1713–1722. https://doi.org/10.1109/TSG.2015.2429919

    Article  Google Scholar 

  56. Sebastián R (2016) Application of a battery energy storage for frequency regulation and peak shaving in a wind diesel power system. IET Gener Transm Distrib 10:764–770. https://doi.org/10.1049/iet-gtd.2015.0435

    Article  Google Scholar 

  57. Abdeltawab HH, Mohamed YARI (2015) Market-oriented energy management of a hybrid wind-battery energy storage system via model predictive control with constraint optimizer. IEEE Trans Ind Electron 62:6658–6670. https://doi.org/10.1109/TIE.2015.2435694

    Article  Google Scholar 

  58. Tao L, Ma J, Cheng Y, Noktehdan A, Chong J, Lu C (2017) A review of stochastic battery models and health management. Renew Sustain Energy Rev 80:716–732. https://doi.org/10.1016/j.rser.2017.05.127

    Article  Google Scholar 

  59. Xu B, Oudalov A, Ulbig A, Andersson G, Kirschen D (2016) Modeling of lithium-ion battery degradation for cell life assessment. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2016.2578950

    Article  Google Scholar 

  60. IRENA (2015) Battery storage for renewables: market status and technology outlook. http://www.irena.org/documentdownloads/publications/irena_battery_storage_report_2015.pdf

  61. Sullivan JP, Fenton KR, Gabaly FEG, Harris TC, Hayden CC et al (2015) The science of battery degradation. Unlimited Release. Sandia National Laboratories, Albuquerque

  62. Krieger EM, Cannarella J, Arnold CB (2013) A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications. Energy 60:492–500. https://doi.org/10.1016/j.energy.2013.08.029

    Article  Google Scholar 

  63. Nuhic A, Terzimehic T, Soczka-Guth T, Buchholz M, Dietmayer K (2013) Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J Power Sources 239:680–688. https://doi.org/10.1016/j.jpowsour.2012.11.146

    Article  Google Scholar 

  64. Cotton B (2012) VRLA battery lifetime fingerprints—Part 1. In: Intelec 2012. IEEE. https://doi.org/10.1109/INTLEC.2012.6374495

  65. Ru Y, Kleissl J, Martinez S (2013) Storage size determination for grid-connected photovoltaic systems. IEEE Trans Sustain Energy 4:68–81. https://doi.org/10.1109/TSTE.2012.2199339

    Article  Google Scholar 

  66. Stroe DI, Knap V, Swierczynski M, Stroe AI, Teodorescu R (2017) Operation of a grid-connected lithium-ion battery energy storage system for primary frequency regulation: a battery lifetime perspective. IEEE Trans Ind Appl 53:430–438. https://doi.org/10.1109/TIA.2016.2616319

    Article  Google Scholar 

  67. Dragicevic T, Pandzic H, Skrlec D, Kuzle I, Guerrero JM, Kirschen DS (2014) Capacity optimization of renewable energy sources and battery storage in an autonomous telecommunication facility. IEEE Trans Sustain Energy 5:1367–1378. https://doi.org/10.1109/TSTE.2014.2316480

    Article  Google Scholar 

  68. Li S, He H, Su C, Zhao P (2020) Data driven battery modeling and management method with aging. Appl Energy 275:115340. https://doi.org/10.1016/j.apenergy.2020.115340

    Article  Google Scholar 

  69. Wang S, Guo D, Han X, Lu L, Sun K, Li W et al (2020) Impact of battery degradation models on energy management of a grid-connected DC microgrid. Energy 207:118228. https://doi.org/10.1016/j.energy.2020.118228

    Article  Google Scholar 

  70. Lujano-Rojas JM, Dufo-López R, Atencio-Guerra JL, Rodrigues EMG, Bernal- Agustín JL, Catalão JPS (2016) Operating conditions of lead-acid batteries in the optimization of hybrid energy systems and microgrids. Appl Energy 179:590–600. https://doi.org/10.1016/j.apenergy.2016.07.018

    Article  Google Scholar 

  71. Luo F, Meng K, Dong ZY, Zheng Y, Chen Y, Wong KP (2015) Coordinated operational planning for wind farm with battery energy storage system. IEEE Trans Sustain Energy 6:253–262. https://doi.org/10.1109/TSTE.2014.2367550

    Article  Google Scholar 

  72. Yao DL, Choi SS, Tseng KJ, Lie TT (2012) Determination of short-term power dispatch schedule for a wind farm incorporated with dual-battery energy storage scheme. IEEE Trans Sustain Energy 3:74–84. https://doi.org/10.1109/TSTE.2011.2163092

    Article  Google Scholar 

  73. Zhang X, Yuan Y, Hua L, Cao Y, Qian K (2017) On generation schedule tracking of wind farms with battery energy storage systems. IEEE Trans Sustain Energy 8:341–353. https://doi.org/10.1109/TSTE.2016.2598823

    Article  Google Scholar 

  74. Barnes AK, Balda JC, Escobar-Mejia A (2015) A semi-markov model for control of energy storage in utility grids and microgrids with PV generation. IEEE Trans Sustain Energy 6:546–556. https://doi.org/10.1109/TSTE.2015.2393353

    Article  Google Scholar 

  75. Wang G, Ciobotaru M, Agelidis VG (2014) Power smoothing of large solar PV plant using hybrid energy storage. IEEE Trans Sustain Energy 5:834–842. https://doi.org/10.1109/TSTE.2014.2305433

    Article  Google Scholar 

  76. Zhang Z, Wang J, Wang X (2015) An improved charging/discharging strategy of lithium batteries considering depreciation cost in day-ahead microgrid scheduling. Energy Convers Manag 105:675–684. https://doi.org/10.1016/j.enconman.2015.07.079

    Article  Google Scholar 

  77. Feng X, Gooi HB, Chen S (2015) Capacity fade-based energy management for lithium-ion batteries used in PV systems. Electr Power Syst Res 129:150–159. https://doi.org/10.1016/j.epsr.2015.08.011

    Article  Google Scholar 

  78. Mazzola S, Vergara C, Astolfi M, Li V, Perez-Arriaga I, Macchi E (2017) Assessing the value of forecast-based dispatch in the operation of off-grid rural microgrids. Renew Energy 108:116–125. https://doi.org/10.1016/j.renene.2017.02.040

    Article  Google Scholar 

  79. Comodi G, Giantomassi A, Severini M, Squartini S, Ferracuti F, Fonti A et al (2015) Multi-apartment residential microgrid with electrical and thermal storage devices: experimental analysis and simulation of energy management strategies. Appl Energy 137:854–866. https://doi.org/10.1016/j.apenergy.2014.07.068

    Article  Google Scholar 

  80. Hanna R, Kleissl J, Nottrott A, Ferry M (2014) Energy dispatch schedule optimization for demand charge reduction using a photovoltaic-battery storage system with solar forecasting. Sol Energy 103:269–287. https://doi.org/10.1016/j.solener.2014.02.020

    Article  Google Scholar 

  81. Teleke S, Baran ME, Bhattacharya S, Huang AQ (2010) Optimal control of battery energy storage for wind farm dispatching. IEEE Trans Energy Convers 25:787–794. https://doi.org/10.1109/TEC.2010.2041550

    Article  Google Scholar 

  82. Yuan Y, Zhang X, Ju P, Qian K, Fu Z (2012) Applications of battery energy storage system for wind power dispatchability purpose. Electr Power Syst Res 93:54–60. https://doi.org/10.1016/j.epsr.2012.07.008

    Article  Google Scholar 

  83. Jiang Q, Gong Y, Wang H (2013) A battery energy storage system dual-layer control strategy for mitigating wind farm fluctuations. IEEE Trans Power Syst 28:3263–3273. https://doi.org/10.1109/TPWRS.2013.2244925

    Article  Google Scholar 

  84. Baziar A, Kavousi-Fard A (2013) Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices. Renew Energy 59:158–166. https://doi.org/10.1016/j.renene.2013.03.026

    Article  Google Scholar 

  85. Lei Z, Yaoyu L (2013) Optimal energy management of wind-battery hybrid power system with two-scale dynamic programming. IEEE Trans Sustain Energy 4:765–773. https://doi.org/10.1109/TSTE.2013.2246875

    Article  Google Scholar 

  86. Abdulla K, De Hoog J, Muenzel V, Suits F, Steer K, Wirth A et al (2016) Optimal operation of energy storage systems considering forecasts and battery degradation. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2016.2606490

    Article  Google Scholar 

  87. Wang Y, Dvorkin Y, Fernandez-Blanco R, Xu B, Qiu T, Kirschen D (2017) Look-ahead bidding strategy for energy storage. IEEE Trans Sustain Energy. https://doi.org/10.1109/TSTE.2017.2656800

    Article  Google Scholar 

  88. Li T, Dong M (2016) Real-time residential-side joint energy storage management and load scheduling with renewable integration. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2016.2550500

    Article  Google Scholar 

  89. Sigrist L, Lobato E, Rouco L (2013) Energy storage systems providing primary reserve and peak shaving in small isolated power systems: an economic assessment. Int J Electr Power Energy Syst 53:675–683. https://doi.org/10.1016/j.ijepes.2013.05.046

    Article  Google Scholar 

  90. Miranda I, Silva N, Leite H (2016) A holistic approach to the integration of battery energy storage systems in island electric grids with high wind penetration. IEEE Trans Sustain Energy 7:775–785. https://doi.org/10.1109/TSTE.2015.2497003

    Article  Google Scholar 

  91. Kazemi M, Zareipour H, Amjady N, Rosehart WD, Ehsan M (2017) Operation scheduling of battery storage systems in joint energy and ancillary services markets. IEEE Trans Sustain Energy. https://doi.org/10.1109/TSTE.2017.2706563

    Article  Google Scholar 

  92. Kazemi M, Zareipour H (2017) Long-term scheduling of battery storage systems in energy and regulation markets considering battery’s lifespan. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2017.2724919

    Article  Google Scholar 

  93. Riffonneau Y, Bacha S, Barruel F, Delaille A (2009) Energy flow management in grid connected PV systems with storage - a deterministic approach. In: 2009 IEEE international conference on industrial technology. IEEE, pp 1–6. https://doi.org/10.1109/ICIT.2009.4939609

  94. Mariaud A, Acha S, Ekins-Daukes N, Shah N, Markides CN (2017) Integrated optimisation of photovoltaic and battery storage systems for UK commercial buildings. Appl Energy 199:466–478. https://doi.org/10.1016/j.apenergy.2017.04.067

    Article  Google Scholar 

  95. Zhou B, Liu X, Cao Y, Li C, Chung CY, Chan KW (2016) Optimal scheduling of virtual power plant with battery degradation cost. IET Gener Transm Distrib 10:712–725. https://doi.org/10.1049/iet-gtd.2015.0103

    Article  Google Scholar 

  96. Mallol-Poyato R, Salcedo-Sanz S, Jiménez-Fernández S, Díaz-Villar P (2015) Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics. Renew Energy 83:13–24. https://doi.org/10.1016/j.renene.2015.04.009

    Article  Google Scholar 

  97. Jen-Hao T, Shang-Wen L, Dong-Jing L, Yong-Qing H (2013) Optimal charging/discharging scheduling of battery storage systems for distribution systems interconnected with sizeable PV generation systems. IEEE Trans Power Syst 28:1425–1433. https://doi.org/10.1109/TPWRS.2012.2230276

    Article  Google Scholar 

  98. Zheng M, Meinrenken CJ, Lackner KS (2015) Smart households: dispatch strategies and economic analysis of distributed energy storage for residential peak shaving. Appl Energy 147:246–257. https://doi.org/10.1016/j.apenergy.2015.02.039

    Article  Google Scholar 

  99. Brenna M, Foiadelli F, Longo M, Zaninelli D (2016) Energy storage control for dispatching photovoltaic power. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2016.2611999

    Article  Google Scholar 

  100. Alam MJE, Muttaqi KM, Sutanto D (2014) A novel approach for ramp-rate control of solar PV using energy storage to mitigate output fluctuations caused by cloud passing. IEEE Trans Energy Convers 29:507–518. https://doi.org/10.1109/TEC.2014.2304951

    Article  Google Scholar 

  101. Abedlrazek SA, Kamalasadan S (2016) A weather based optimal storage management algorithm for PV capacity firming. IEEE Trans Ind Appl. https://doi.org/10.1109/TIA.2016.2598139

    Article  Google Scholar 

  102. Hansang L, Byoung Yoon S, Sangchul H, Seyong J, Byungjun P, Gilsoo J (2012) Compensation for the power fluctuation of the large scale wind farm using hybrid energy storage applications. IEEE Trans Appl Supercond 22:5701904. https://doi.org/10.1109/TASC.2011.2180881

    Article  Google Scholar 

  103. Teleke S, Baran ME, Bhattacharya S, Huang AQ (2010) Rule-based control of battery energy storage for dispatching intermittent renewable sources. IEEE Trans Sustain Energy 1(2):117–124. https://doi.org/10.1109/TSTE.2010.2061880

    Article  Google Scholar 

  104. Bo L, Shahidehpour M (2005) Short-term scheduling of battery in a grid-connected PV/battery system. IEEE Trans Power Syst 20:1053–1061. https://doi.org/10.1109/TPWRS.2005.846060

    Article  Google Scholar 

  105. Osório GJ, Rodrigues EMG, Lujano-Rojas JM, Matias JCO, Catalão JPS (2015) New control strategy for the weekly scheduling of insular power systems with a battery energy storage system. Appl Energy 154:459–470. https://doi.org/10.1016/j.apenergy.2015.05.048

    Article  Google Scholar 

  106. Shuai H, Fang J, Ai X, Wen J, He H (2019) Optimal real-time operation strategy for microgrid: an ADP-based stochastic nonlinear optimization approach. IEEE Trans Sustain Energy 10:931–942. https://doi.org/10.1109/TSTE.2018.2855039

    Article  Google Scholar 

  107. Wang B, Zhang C, Dong ZY (2020) Interval optimization based coordination of demand response and battery energy storage system considering SOC management in a microgrid. IEEE Trans Sustain Energy 11:2922–2931. https://doi.org/10.1109/TSTE.2020.2982205

    Article  Google Scholar 

  108. Abu Abdullah M, Muttaqi KM, Sutanto D, Agalgaonkar AP (2015) An effective power dispatch control strategy to improve generation schedulability and supply reliability of a wind farm using a battery energy storage system. IEEE Trans Sustain Energy 6:1093–1102. https://doi.org/10.1109/TSTE.2014.2350980

    Article  Google Scholar 

  109. Zhang X, Bao J, Wang R, Zheng C, Skyllas-Kazacos M (2016) Dissipativity based distributed economic model predictive control for residential microgrids with renewable energy generation and battery energy storage. Renew Energy. https://doi.org/10.1016/j.renene.2016.05.006

    Article  Google Scholar 

  110. Sandgani MR, Sirouspour S (2017) Coordinated optimal dispatch of energy storage in a network of grid-connected microgrids. IEEE Trans Sustain Energy 8:1166–1176. https://doi.org/10.1109/TSTE.2017.2664666

    Article  Google Scholar 

  111. Lujano-Rojas JM, Dufo-López R, Bernal-Agustín JL, Catalão JPS (2017) Optimizing daily operation of battery energy storage systems under real-time pricing schemes. IEEE Trans Smart Grid 8:316–330. https://doi.org/10.1109/TSG.2016.2602268

    Article  Google Scholar 

  112. Al Essa MJM (2018) Management of charging cycles for grid-connected energy storage batteries. J Energy Storage 18:380–388. https://doi.org/10.1016/j.est.2018.05.019

    Article  Google Scholar 

  113. Zhu Y, Zhao D, Li X, Wang D (2019) Control-limited adaptive dynamic programming for multi-battery energy storage systems. IEEE Trans Smart Grid 10:4235–4244. https://doi.org/10.1109/TSG.2018.2854300

    Article  Google Scholar 

  114. Zeynali S, Rostami N, Ahmadian A, Elkamel A (2020) Two-stage stochastic home energy management strategy considering electric vehicle and battery energy storage system: an ANN-based scenario generation methodology. Sustain Energy Technol Assess 39:100722. https://doi.org/10.1016/j.seta.2020.100722

    Article  Google Scholar 

  115. Nguyen S, Peng W, Sokolowski P, Alahakoon D, Yu X (2020) Optimizing rooftop photovoltaic distributed generation with battery storage for peer-to-peer energy trading. Appl Energy 228:2567–2580. https://doi.org/10.1016/j.apenergy.2018.07.042

    Article  Google Scholar 

  116. Zhang N, Leibowicz BD, Hanasusanto GA (2020) Optimal residential battery storage operations using robust data-driven dynamic programming. IEEE Trans Smart Grid 11:1771–1780. https://doi.org/10.1109/TSG.2019.2942932

    Article  Google Scholar 

  117. Nath S, Wu J (2020) Online battery scheduling for grid-connected photo-voltaic systems. J Energy Storage 31:101713. https://doi.org/10.1016/j.est.2020.101713

    Article  Google Scholar 

  118. Riffonneau Y, Bacha S, Barruel F, Ploix S (2011) Optimal power flow management for grid connected PV systems with batteries. IEEE Trans Sustain Energy 2:309–320. https://doi.org/10.1109/TSTE.2011.2114901

    Article  Google Scholar 

  119. Sani Hassan A, Cipcigan L, Jenkins N (2017) Optimal battery storage operation for PV systems with tariff incentives. Appl Energy 203:422–441. https://doi.org/10.1016/j.apenergy.2017.06.043

    Article  Google Scholar 

  120. Khalilpour R, Vassallo A (2016) Planning and operation scheduling of PV-battery systems: a novel methodology. Renew Sustain Energy Rev 53:194–208. https://doi.org/10.1016/j.rser.2015.08.015

    Article  Google Scholar 

  121. Li T, Dong M (2015) Real-time energy storage management with renewable integration: finite-time horizon approach. IEEE J Sel Areas Commun 33:2524–2539. https://doi.org/10.1109/JSAC.2015.2481212

    Article  Google Scholar 

  122. Yuan Y, Zhang X, Ju P, Li Q, Qian K, Fu Z (2014) Determination of economic dispatch of wind farm-battery energy storage system using Genetic Algorithm. Int Trans Electr Energy Syst 24:264–280. https://doi.org/10.1002/etep.1696

    Article  Google Scholar 

  123. Correa-florez CA, Gerossier A, Michiorri A, Kariniotakis G (2018) Stochastic operation of home energy management systems including battery cycling. Appl Energy 225:1205–1218. https://doi.org/10.1016/j.apenergy.2018.04.130

    Article  Google Scholar 

  124. Hossain A, Roy H, Squartini S, Zaman F (2019) Energy scheduling of community microgrid with battery cost using particle swarm optimization. Appl Energy 254:113723. https://doi.org/10.1016/j.apenergy.2019.113723

    Article  Google Scholar 

  125. Cao J, Harrold D, Fan Z, Morstyn T, Healey D, Li K (2020) Deep reinforcement learning-based energy storage arbitrage with accurate lithium-ion battery degradation model. IEEE Trans Smart Grid 11:4513–4521. https://doi.org/10.1109/TSG.2020.2986333

    Article  Google Scholar 

  126. Kim JS, Yang H, Choi SG (2017) Distributed real-time stochastic optimization based ESS management strategy for residential customers. In: 2017 19th International conference on advanced communication technology 2017, pp 321–325. https://doi.org/10.23919/ICACT.2017.7890107

  127. Maheshwari A, Paterakis NG, Santarelli M, Gibescu M (2020) Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model. Appl Energy 261:114360. https://doi.org/10.1016/j.apenergy.2019.114360

    Article  Google Scholar 

  128. Arteaga J, Zareipour H (2019) A price-maker/price-taker model for the operation of battery storage systems in electricity markets. IEEE Trans Smart Grid 10:6912–6920. https://doi.org/10.1109/TSG.2019.2913818

    Article  Google Scholar 

  129. Zhang YJ, Zhao C, Tang W, Low SH (2016) Profit maximizing planning and control of battery energy storage systems for primary frequency control. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2016.2562672

    Article  Google Scholar 

  130. Bitaraf H, Rahman S (2017) Reducing curtailed wind energy through energy storage and demand response. IEEE Trans Sustain Energy. https://doi.org/10.1109/TSTE.2017.2724546

    Article  Google Scholar 

  131. Zhang C, Xu Y, Dong ZY, Ma J (2016) Robust operation of microgrids via two-stage coordinated energy storage and direct load control. IEEE Trans Power Syst. https://doi.org/10.1109/TPWRS.2016.2627583

    Article  Google Scholar 

  132. Barsali S, Giglioli R, Lutzemberger G, Poli D, Valenti G (2017) Optimised operation of storage systems integrated with MV photovoltaic plants, considering the impact on the battery lifetime. J Energy Storage 12:178–185. https://doi.org/10.1016/j.est.2017.05.003

    Article  Google Scholar 

  133. He G, Chen Q, Kang C, Xia Q, Poolla K (2017) Cooperation of wind power and battery storage to provide frequency regulation in power markets. IEEE Trans Power Syst 32:3559–3568. https://doi.org/10.1109/TPWRS.2016.2644642

    Article  Google Scholar 

  134. Zafar R, Ravishankar J, Fletcher JE, Pota HR (2020) Multi-timescale voltage stability-constrained Volt/VAR optimization with battery storage system in distribution grids. IEEE Trans Sustain Energy 11:868–878. https://doi.org/10.1109/TSTE.2019.2910726

    Article  Google Scholar 

  135. Darcovich K, Kenney B, MacNeil DD, Armstrong MM (2015) Control strategies and cycling demands for Li-ion storage batteries in residential micro-cogeneration systems. Appl Energy 141:32–41. https://doi.org/10.1016/j.apenergy.2014.11.079

    Article  Google Scholar 

  136. Leadbetter J, Swan L (2012) Battery storage system for residential electricity peak demand shaving. Energy Build 55:685–692. https://doi.org/10.1016/j.enbuild.2012.09.035

    Article  Google Scholar 

  137. Teki VK, Maharana MK, Panigrahi CK (2020) Study on home energy management system with battery storage for peak load shaving. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.08.377

    Article  Google Scholar 

  138. Uddin M, Romlie MF, Abdullah MF, Tan C, Sha GM, Bakar AHA (2020) A novel peak shaving algorithm for islanded microgrid using battery energy storage system. Energy 196:1–13. https://doi.org/10.1016/j.energy.2020.117084

    Article  Google Scholar 

  139. Samanta H, Bhattacharjee A, Pramanik M, Das A (2020) Internet of Things based smart energy management in a vanadium redox flow battery storage integrated bio-solar microgrid. J Energy Storage 32:101967. https://doi.org/10.1016/j.est.2020.101967

    Article  Google Scholar 

  140. Taylor Z, Akhavan-Hejazi H, Cortez E, Alvarez L, Ula S, Barth M et al (2019) Customer-side SCADA-assisted large battery operation optimization for distribution feeder peak load shaving. IEEE Trans Smart Grid 10:992–1004. https://doi.org/10.1109/TSG.2017.2757007

    Article  Google Scholar 

  141. Cai Z, Bussar C, Stöcker P, Moraes L, Magnor D, Leuthold M et al (2015) Application of battery storage for compensation of forecast errors of wind power generation in 2050. Energy Proc 73:208–17. https://doi.org/10.1016/j.egypro.2015.07.673

    Article  Google Scholar 

  142. Reihani E, Sepasi S, Roose LR, Matsuura M (2016) Energy management at the distribution grid using a battery energy storage system (BESS). Int J Electr Power Energy Syst 77:337–344. https://doi.org/10.1016/j.ijepes.2015.11.035

    Article  Google Scholar 

  143. Kou P, Gao F, Guan X (2015) Stochastic predictive control of battery energy storage for wind farm dispatching: using probabilistic wind power forecasts. Renew Energy 80:286–300. https://doi.org/10.1016/j.renene.2015.02.001

    Article  Google Scholar 

  144. Abbey C, Strunz K, Joos G (2009) A knowledge-based approach for control of two-level energy storage for wind energy systems. IEEE Trans Energy Convers 24:539–547. https://doi.org/10.1109/TEC.2008.2001453

    Article  Google Scholar 

  145. Dan W, Shaoyun G, Hongjie J, Chengshan W, Yue Z, Ning L et al (2014) A demand response and battery storage coordination algorithm for providing microgrid tie-line smoothing services. IEEE Trans Sustain Energy 5:476–486. https://doi.org/10.1109/TSTE.2013.2293772

    Article  Google Scholar 

  146. Jae Woong S, Youngho C, Seog-Joo K, Sang Won M, Kyeon H (2013) Synergistic control of SMES and battery energy storage for enabling dispatchability of renewable energy sources. IEEE Trans Appl Supercond 23:5701205. https://doi.org/10.1109/TASC.2013.2241385

    Article  Google Scholar 

  147. Jannati M, Hosseinian SH, Vahidi B, Li G (2016) ADALINE (ADAptive Linear NEuron)-based coordinated control for wind power fluctuations smoothing with reduced BESS (battery energy storage system) capacity. Energy 101:1–8. https://doi.org/10.1016/j.energy.2016.01.100

    Article  Google Scholar 

  148. Dicorato M, Forte G, Pisani M, Trovato M (2012) Planning and operating combined wind-storage system in electricity market. IEEE Trans Sustain Energy 3:209–217. https://doi.org/10.1109/TSTE.2011.2179953

    Article  Google Scholar 

  149. Teleke S, Baran ME, Huang AQ, Bhattacharya S, Anderson L (2009) Control strategies for battery energy storage for wind farm dispatching. IEEE Trans Energy Convers 24:725–732. https://doi.org/10.1109/TEC.2009.2016000

    Article  Google Scholar 

  150. Teleke S, Baran ME, Bhattacharya S, Huang AQ (2010) Rule-based control of battery energy storage for dispatching intermittent renewable sources. IEEE Trans Sustain Energy 1:117–124. https://doi.org/10.1109/TSTE.2010.2061880

    Article  Google Scholar 

  151. Arifujjaman M (2015) A comprehensive power loss, efficiency, reliability and cost calculation of a 1 MW/500 kWh battery based energy storage system for frequency regulation application. Renew Energy 74:158–169. https://doi.org/10.1016/j.renene.2014.07.046

    Article  Google Scholar 

  152. Liu W, Liu Y (2020) Hierarchical model predictive control of wind farm with energy storage system for frequency regulation during black-start. Electr Power Energy Syst 119:105893. https://doi.org/10.1016/j.ijepes.2020.105893

    Article  Google Scholar 

  153. Boyle J, Littler T, Foley A (2020) Battery energy storage system state-of-charge management to ensure availability of frequency regulating services from wind farms. Renew Energy 160:1119–1135. https://doi.org/10.1016/j.renene.2020.06.025

    Article  Google Scholar 

  154. Engels J, Claessens B, Deconinck G (2020) Optimal combination of frequency control and peak shaving with battery storage systems. IEEE Trans Smart Grid 11:3270–3279. https://doi.org/10.1109/TSG.2019.2963098

    Article  Google Scholar 

  155. Krata J, Saha TK (2019) Real-time coordinated voltage support with battery energy storage in a distribution grid equipped with medium-scale PV generation. IEEE Trans Smart Grid 10:3486–3497. https://doi.org/10.1109/TSG.2018.2828991

    Article  Google Scholar 

  156. Xu Y, Hu J, Gu W, Su W, Liu W (2016) Real-time distributed control of battery energy storage systems for security constrained DC-OPF. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2016.2593911

    Article  Google Scholar 

  157. Zhu Y, Liu C, Sun K, Shi D, Wang Z (2019) Optimization of battery energy storage to improve power system oscillation damping. IEEE Trans Sustain Energy 10(2):1015–1024. https://doi.org/10.1109/TSTE.2018.2858262

    Article  Google Scholar 

  158. Shayeghi H, Monfaredi F, Dejamkhooy A, Sha M, Catalão JPS (2021) Assessing hybrid supercapacitor-battery energy storage for active power management in a wind-diesel system. Electr Power Energy Syst. https://doi.org/10.1016/j.ijepes.2020.106391

    Article  Google Scholar 

  159. Georgiou GS, Christodoulides P, Kalogirou SA (2020) Optimizing the energy storage schedule of a battery in a PV grid-connected nZEB using linear programming. Energy 208:118177. https://doi.org/10.1016/j.energy.2020.118177

    Article  Google Scholar 

  160. Mégel O, Mathieu JL, Andersson G (2015) Scheduling distributed energy storage units to provide multiple services under forecast error. Int J Electr Power Energy Syst 72:48–57. https://doi.org/10.1016/j.ijepes.2015.02.010

    Article  Google Scholar 

  161. Grillo S, Pievatolo A, Tironi E (2016) Optimal storage scheduling using Markov decision processes. IEEE Transactions on Sustainable Energy 7(2):755–764. https://doi.org/10.1109/TSTE.2015.2497718

    Article  Google Scholar 

  162. Böcker B, Kippelt S, Weber C, Rehtanz C (2017) Storage valuation in congested grids. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2017.2721982

    Article  Google Scholar 

  163. Malysz P, Sirouspour S, Emadi A (2014) An optimal energy storage control strategy for grid-connected microgrids. IEEE Trans Smart Grid 5:1785–1796. https://doi.org/10.1109/TSG.2014.2302396

    Article  Google Scholar 

  164. Moradi H, Esfahanian M, Abtahi A, Zilouchian A (2018) Optimization and energy management of a standalone hybrid microgrid in the presence of a battery storage system: Battery State of Charge Distributed Energy resources. Energy 147:226–238. https://doi.org/10.1016/j.energy.2018.01.016

    Article  Google Scholar 

  165. Engels J, Claessens B, Deconinck G (2019) Combined stochastic optimization of frequency control and self-consumption with a battery. IEEE Trans Smart Grid 10:1971–1981. https://doi.org/10.1109/TSG.2017.2785040

    Article  Google Scholar 

  166. Olivella-Rosell P, Rullan F, Lloret-Gallego P, Prieto-Araujo E, Ferrer-San-José R, Barja-Martinez S et al (2020) Centralized and distributed optimization for aggregated flexibility services provision. IEEE Trans Smart Grid 11:3257–3269. https://doi.org/10.1109/TSG.2019.2962269

    Article  Google Scholar 

  167. Liang Z, Chen H, Wang X, Chen S, Zhang C (2020) Risk-based uncertainty set optimization method for energy management of hybrid AC/DC microgrids with uncertain renewable generation. IEEE Trans Smart Grid 11:1526–1542. https://doi.org/10.1109/TSG.2019.2939817

    Article  Google Scholar 

  168. Kusakana K (2020) Optimal peer-to-peer energy management between grid-connected prosumers with battery storage and photovoltaic systems. J Energy Storage 32:101717. https://doi.org/10.1016/j.est.2020.101717

    Article  Google Scholar 

  169. Xu X, Hu W, Cao D, Huang Q, Liu Z, Liu W et al (2020) Scheduling of wind-battery hybrid system in the electricity market using distributionally robust optimization. Renew Energy 156:47–56. https://doi.org/10.1016/j.renene.2020.04.057

    Article  Google Scholar 

  170. Duong T, Khambadkone AM (2013) Energy management for lifetime extension of energy storage system in micro-grid applications. IEEE Trans Smart Grid 4:1289–1296. https://doi.org/10.1109/TSG.2013.2272835

    Article  Google Scholar 

  171. Zou J, Peng C, Shi J, Xin X, Zhang Z (2015) State-of-charge optimising control approach of battery energy storage system for wind farm. IET Renew Power Gener 9:647–652. https://doi.org/10.1049/iet-rpg.2014.0202

    Article  Google Scholar 

  172. Saxena V, Kumar N, Nangia U (2023) An extensive data-based assessment of optimization techniques for distributed generation allocation: conventional to modern. Arch Comput Methods Eng 30:675–701. https://doi.org/10.1007/s11831-022-09812-w

    Article  Google Scholar 

  173. Bo Z, Xuesong Z, Jian C, Caisheng W, Li G (2013) Operation optimization of standalone microgrids considering lifetime characteristics of battery energy storage system. IEEE Trans Sustain Energy 4:934–943. https://doi.org/10.1109/TSTE.2013.2248400

    Article  Google Scholar 

  174. Tan X, Wu Y, Tsang DHK (2016) Pareto optimal operation of distributed battery energy storage systems for energy arbitrage under dynamic pricing. IEEE Trans Parallel Distrib Syst 27:2103–2115. https://doi.org/10.1109/TPDS.2015.2478785

    Article  Google Scholar 

  175. Zhang F, Wang G, Meng K, Zhao J, Xu Z, Dong ZY et al (2016) Improved cycle control and sizing scheme for wind energy storage system based on multi-objective optimization. IEEE Trans Sustain Energy. https://doi.org/10.1109/TSTE.2016.2636878

    Article  Google Scholar 

  176. Ju C, Wang P, Goel L, Xu Y (2017) A two-layer energy management system for microgrids with hybrid energy storage considering degradation costs. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2017.2703126

    Article  Google Scholar 

  177. Purvins A, Sumner M (2013) Optimal management of stationary lithium-ion battery system in electricity distribution grids. J Power Sources 242:742–755. https://doi.org/10.1016/j.jpowsour.2013.05.097

    Article  Google Scholar 

  178. Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106:25–57. https://doi.org/10.1007/s10107-004-0559-y

    Article  MathSciNet  Google Scholar 

  179. Gurobi optimizer reference manual (n.d.) http://www.gurobi.com/. Accessed 23 Mar 2018

  180. Bellman R (1952) The theory of dynamic programming. Proc Natl Acad Sci USA 60:503–515

    MathSciNet  Google Scholar 

  181. Firoozian R (2009) State variable feedback control theory. In: Firoozian R (ed) Servo motors and industrial control theory. Springer, Boston, pp 43–58. https://doi.org/10.1007/978-0-387-85460-1_3

    Chapter  Google Scholar 

  182. Sadeghi J, Sadeghi S, Niaki STA (2014) Optimizing a hybrid vendor-managed inventory and transportation problem with fuzzy demand: an improved particle swarm optimization algorithm. Inf Sci 272:126–144. https://doi.org/10.1016/j.ins.2014.02.075

    Article  MathSciNet  Google Scholar 

  183. Bonyadi MR, Michalewicz Z (2017) Particle swarm optimization for single objective continuous space problems: a review. Evol Comput 25:1–54. https://doi.org/10.1162/EVCO_r_00180

    Article  Google Scholar 

  184. Athari MH, Ardehali MM (2016) Operational performance of energy storage as function of electricity prices for on-grid hybrid renewable energy system by optimized fuzzy logic controller. Renew Energy 85:890–902. https://doi.org/10.1016/j.renene.2015.07.055

    Article  Google Scholar 

  185. Afzali P, Anjom N, Rashidinejad M, Bakhshai A (2020) Techno-economic study driven based on available efficiency index for optimal operation of a smart grid in the presence of energy storage system. J Energy Storage 32:101853. https://doi.org/10.1016/j.est.2020.101853

    Article  Google Scholar 

  186. Zheng QP, Wang J, Liu AL (2015) Stochastic optimization for unit commitment: a review. IEEE Trans Power Syst 30:1913–1924. https://doi.org/10.1109/TPWRS.2014.2355204

    Article  Google Scholar 

  187. Bhardwaj A, Vikram Kumar K, Vijay Kumar S, Singh B, Khurana P (2012) Unit commitment in electrical power system-a literature review. In: 2012 IEEE international power engineering and optimization conference, Malaysia, pp 275–280. https://doi.org/10.1109/PEOCO.2012.6230874

  188. Tran D, Zhou H, Khambadkone AM (2010) Energy management and dynamic control in Composite Energy Storage System for micro-grid applications. In: IECON 2010—36th annual conference of the IEEE Industrial Electronics Society, pp 1818–1824. https://doi.org/10.1109/IECON.2010.5675399

  189. Saxena V, Kumar N, Nangia U (2022) An impact assessment of distributed generation in distribution network. In: Pandit M, Gaur MK, Rana PS, Tiwari A (eds) Artificial Intelligence and Sustainable Computing. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-19-1653-3_26

    Chapter  Google Scholar 

  190. Saxena V, Kumar N, Nangia U (2021) Analysis of smart electricity grid framework unified with renewably distributed generation. In: Agrawal R, Kishore Singh C, Goyal A (eds) Advances in Smart Communication and Imaging Systems, vol 721. Lecture Notes in Electrical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-9938-5_68

    Chapter  Google Scholar 

  191. Gabash A, Pu L (2013) Flexible optimal operation of battery storage systems for energy supply networks. IEEE Trans Power Syst 28:2788–2797. https://doi.org/10.1109/TPWRS.2012.2230277

    Article  Google Scholar 

  192. Avril S, Arnaud G, Florentin A, Vinard M (2010) Multi-objective optimization of batteries and hydrogen storage technologies for remote photovoltaic systems. Energy 35:5300–5308. https://doi.org/10.1016/j.energy.2010.07.033

    Article  Google Scholar 

  193. Kumar M, Diwania S, Sen S et al (2023) Emission-averse techno-economical study for an isolated microgrid system with solar energy and battery storage. Electr Eng 105:1883–1896. https://doi.org/10.1007/s00202-023-01785-8

    Article  Google Scholar 

  194. Kumar M, Sen S, Jain H, Diwania S (2022) Optimal planning for building integrated microgrid system (BIMGS) for economic feasibility with renewable energy support. In: 2022 IEEE 10th Power India international conference (PIICON), New Delhi, India, pp 1–6. https://doi.org/10.1109/PIICON56320.2022.10045284

  195. Kumbhar A, Dhawale PG, Kumbhar S, Patil U, Magdum P (2021) A comprehensive review: machine learning and its application in integrated power system. Energy Rep 7:5467–5474. https://doi.org/10.1016/j.egyr.2021.08.133

    Article  Google Scholar 

  196. Saxena V, Kumar N, Nangia U (2022) An impact assessment of distributed generation in distribution network. In: Artificial intelligence and sustainable computing. algorithms for intelligent systems. Springer, Singapore. https://doi.org/10.1007/978-981-19-1653-3_26

  197. Al-Saffar M, Musilek P (2020) Reinforcement learning-based distributed BESS management for mitigating overvoltage issues in systems with high PV penetration. IEEE Trans Smart Grid 11:2980–2994. https://doi.org/10.1109/TSG.2020.2972208

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Saxena.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, V., Kumar, N. & Nangia, U. Computation and Optimization of BESS in the Modeling of Renewable Energy Based Framework. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-023-10046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-023-10046-7

Keywords

Navigation