Skip to main content
Log in

Molecular Dynamics Investigation of Shock-Induced Deformation Behavior and Failure Mechanism in Metallic Materials

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Shock waves are generated under high-speed impact conditions, creating extreme environments that are difficult to be simulated. Molecular dynamics (MD), as a vital tool for investigating deformation mechanisms of materials at the atomic scale, plays a crucial role in investigating the response of metallic materials to shock waves. Herein, we comprehensively review the state-to-the-art progress of MD study on deformation and failure mechanisms in metals under shock loading. We start the overview by summarizing different kinds of methodologies that could generate shock waves in MD simulations. Then we focus on the examination and analysis of the shock-induced plasticity and phase transition behavior in metals with different crystal structures that intrinsically experience different deformation mechanisms. We consider single crystal, bicrystal and ploycrystal metals with face-centered cubic, body-centered cubic and hexagonal closest packed structures. Furthermore, the failure mechanisms in metals under shock loading are surveyed to disclose the relationship between spallation damage and plastic deformation. Finally, a summary and future prospects of MD studies concerning deformation and failure of metals under shock loading are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Field JE, Walley TM, Proud W, Goldrein H, Siviour C (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30(7):725–775

    Article  Google Scholar 

  2. Armstrong R, Walley S (2008) High strain rate properties of metals and alloys. Int Mater Rev 53(3):105–128

    Article  Google Scholar 

  3. Jiang F, Vecchio KS (2009) Hopkinson bar loaded fracture experimental technique: a critical review of dynamic fracture toughness tests. Appl Mech Rev 62(6):060802

    Article  Google Scholar 

  4. Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47:1411–1478

    Article  Google Scholar 

  5. French BM, Koeberl C (2010) The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth Sci Rev 98(1–2):123–170

    Article  Google Scholar 

  6. Zhang Y, Chen S, Cai Y, Lu L, Fan D, Shi J, Huang J, Luo S-N (2020) Novel x-ray and optical diagnostics for studying energetic materials: a review. Engineering 6(9):992–1005

    Article  Google Scholar 

  7. Johnson Q, Mitchell A, Keeler RN, Evans L (1970) X-ray diffraction during shock-wave compression. Phys Rev Lett 25(16):1099

    Article  Google Scholar 

  8. Binder K, Horbach J, Kob W, Paul W, Varnik F (2004) Molecular dynamics simulations. J Phys 16(5):S429

    Google Scholar 

  9. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  10. Allen MP (2004) Introduction to molecular dynamics simulation. Comput Soft Matter 23(1):1–28

    MathSciNet  Google Scholar 

  11. Hardy RJ (1982) Formulas for determining local properties in molecular-dynamics simulations: shock waves. J Chem Phys 76(1):622–628

    Article  Google Scholar 

  12. Holian BL (1988) Modeling shock-wave deformation via molecular dynamics. Phys Rev A 37(7):2562

    Article  Google Scholar 

  13. Romero NA, Nakano A, Riley KM, Shimojo F, Kalia RK, Vashishta P, Messina PC (2015) Quantum molecular dynamics in the post-petaflops era. Computer 48(11):33–41

    Article  Google Scholar 

  14. Dewapriya M, Miller R (2021) Molecular dynamics simulations of shock propagation and spallation in amorphous polymers. J Appl Mech 88(10):101005

    Article  Google Scholar 

  15. Fu Y, Michopoulos J, Song J-H (2015) Dynamics response of polyethylene polymer nanocomposites to shock wave loading. J Polym Sci Part B 53(18):1292–1302

    Article  Google Scholar 

  16. Wang X-F, Tao G, Wen P, Ren B-X, Pang C-Q, Du C-X (2020) Damage to the DPPC membrane induced by shock waves: molecular dynamics simulations. J Phys Chem B 124(43):9535–9545

    Article  Google Scholar 

  17. Espinosa S, Asproulis N, Drikakis D (2014) Chemotherapy efficiency increase via shock wave interaction with biological membranes: a molecular dynamics study. Microfluid Nanofluid 16:613–622

    Article  Google Scholar 

  18. Adhikari U, Goliaei A, Berkowitz ML (2015) Mechanism of membrane poration by shock wave induced nanobubble collapse: a molecular dynamics study. J Phys Chem B 119(20):6225–6234

    Article  Google Scholar 

  19. Das P, Zhao P, Perera D, Sewell T, Udaykumar H (2021) Molecular dynamics-guided material model for the simulation of shock-induced pore collapse in \(\beta\)-octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (\(\beta\)-hmx). J Appl Phys 130(8):085901

    Article  Google Scholar 

  20. An Q, Zybin SV, Goddard WA III, Jaramillo-Botero A, Blanco M, Luo S-N (2011) Elucidation of the dynamics for hot-spot initiation at nonuniform interfaces of highly shocked materials. Phys Rev B 84(22):220101

    Article  Google Scholar 

  21. Wen P, Demaske B, Spearot DE, Phillpot SR (2018) Shock compression of cu x zr 100–x metallic glasses from molecular dynamics simulations. J Mater Sci 53:5719–5732

    Article  Google Scholar 

  22. Huang X, Ling Z, Dai L (2014) Ductile-to-brittle transition in spallation of metallic glasses. J Appl Phys 116(14):143503

    Article  Google Scholar 

  23. Yang X, Zeng X, Pu C, Chen W, Chen H, Wang F (2018) Molecular dynamics modeling of the Hugoniot states of aluminum. AIP Adv 8(10):105212

    Article  Google Scholar 

  24. Madhavan S, Mishra V, Narayana PL, Warrier M (2023) On the relationship between shock and particle velocities in single and bicrystal systems of aluminum: a molecular dynamics study. Mater Today 87:204–209

    Google Scholar 

  25. Selezenev A, Golubev V, Aleinikov AY, Butnev O, Barabanov R, Voronin B (2002) Molecular dynamics simulation of shock wave compression of metals. In: AIP conference proceedings, vol 620, pp 374–377. American Institute of Physics

  26. Wood MA, Cherukara MJ, Antillon E, Strachan A (2017) Molecular dynamics simulations of shock loading of materials: a review and tutorial. Rev Comput Chem 30:43–92

    Google Scholar 

  27. Steinhauser MO, Hiermaier S (2009) A review of computational methods in materials science: examples from shock-wave and polymer physics. Int J Mol Sci 10(12):5135–5216

    Article  Google Scholar 

  28. Hamilton BW, Sakano MN, Li C, Strachan A (2021) Chemistry under shock conditions. Annu Rev Mater Res 51:101–130

    Article  Google Scholar 

  29. Wen P, Tao G, Spearot DE, Phillpot SR (2022) Molecular dynamics simulation of the shock response of materials: a tutorial. J Appl Phys 131(5):051101

    Article  Google Scholar 

  30. Holian BL, Lomdahl PS (1998) Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science 280(5372):2085–2088

    Article  Google Scholar 

  31. Luo S-N, Germann TC, Tonks DL (2009) Spall damage of copper under supported and decaying shock loading. J Appl Phys 106(12):123518

    Article  Google Scholar 

  32. Holian BL, Hoover WG, Moran B, Straub GK (1980) Shock-wave structure via nonequilibrium molecular dynamics and Navier–Stokes continuum mechanics. Phys Rev A 22(6):2798

    Article  Google Scholar 

  33. Bolesta AV, Zheng L, Thompson DL, Sewell TD (2007) Molecular dynamics simulations of shock waves using the absorbing boundary condition: a case study of methane. Phys Rev B 76(22):224108

    Article  Google Scholar 

  34. Asay JR (1997) The use of shock-structure methods for evaluating high-pressure material properties. Int J Impact Eng 20(1–5):27–61

    Article  Google Scholar 

  35. Chhabildas L (1987) Survey of diagnostic tools used in hypervelocity impact studies. Int J Impact Eng 5(1–4):205–220

    Article  Google Scholar 

  36. Barker L, Hollenbach R (1965) Interferometer technique for measuring the dynamic mechanical properties of materials. Rev Sci Instrum 36(11):1617–1620

    Article  Google Scholar 

  37. Johnson P, Burgess T (1968) Free surface velocity measurement of an impacted projectile by optical doppler shift. Rev Sci Instrum 39(8):1100–1103

    Article  Google Scholar 

  38. Germann TC, Holian BL, Lomdahl PS, Ravelo R (2000) Orientation dependence in molecular dynamics simulations of shocked single crystals. Phys Rev Lett 84(23):5351

    Article  Google Scholar 

  39. Neogi A, Mitra N (2017) Shock induced deformation response of single crystal copper: effect of crystallographic orientation. Comput Mater Sci 135:141–151

    Article  Google Scholar 

  40. Zimmerman JA, Winey JM, Gupta YM (2011) Elastic anisotropy of shocked aluminum single crystals: use of molecular dynamics simulations. Phys Rev B 83(18):184113

    Article  Google Scholar 

  41. Kum O (2003) Orientation effects in shocked nickel single crystals via molecular dynamics. J Appl Phys 93(6):3239–3247

    Article  Google Scholar 

  42. Liu S, Feng G, Xiao L, Guan Y, Song W (2023) Shock-induced dynamic response in single and nanocrystalline high-entropy alloy FeNiCrCoCu. Int J Mech Sci 239:107859

    Article  Google Scholar 

  43. Liu B, Jian Z, Guo L, Li X, Wang K, Deng H, Hu W, Xiao S, Yuan D (2022) Effect of crystallographic orientations on shock-induced plasticity for CoCrFeMnNi high-entropy alloy. Int J Mech Sci 226:107373

    Article  Google Scholar 

  44. Cao F-H, Wang Y-J, Dai L-H (2020) Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment. Acta Mater 194:283–294

    Article  Google Scholar 

  45. Sun S, Li D, Yang C, Fu L, Kong D, Lu Y, Guo Y, Liu D, Guan P, Zhang Z et al (2022) Direct atomic-scale observation of ultrasmall ag nanowires that exhibit fcc, bcc, and hcp structures under bending. Phys Rev Lett 128(1):015701

    Article  Google Scholar 

  46. Du X, Xiong Q, Zhou L, Kan Q, Jiang S, Zhang X (2021) Microplastic deformation of CoCrFeMnNi high-entropy alloy under laser shock: a molecular dynamics simulation. Chin J Theor Appl Mech 53(12):3331–3340

    Google Scholar 

  47. Xiong Q, Shimada T, Kitamura T, Li Z (2020) Selective excitation of two-wave structure depending on crystal orientation under shock compression. Sci China Phys Mech Astron 63(11):1–13

    Article  Google Scholar 

  48. Aghababaei R, Joshi SP (2014) Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations. Acta Mater 69:326–342

    Article  Google Scholar 

  49. Xiong Q-L, Shimada T, Kitamura T, Li Z (2020) Atomic investigation of effects of coating and confinement layer on laser shock peening. Optics Laser Technol 131:106409

    Article  Google Scholar 

  50. Sichani MM, Spearot DE (2016) A molecular dynamics study of dislocation density generation and plastic relaxation during shock of single crystal Cu. J Appl Phys 120(4):045902

    Article  Google Scholar 

  51. Chen X, Li S, Tang X, Lu S, Zhao Y, Tao F, Peng X (2022) Molecular dynamics analysis of the low-temperature shock behavior of the CoCrFeMnNi high-entropy alloy. Model Simul Mater Sci Eng 30(8):085006

    Article  Google Scholar 

  52. Bryukhanov I (2022) Atomistic simulation of the shock wave in copper single crystals with pre-existing dislocation network. Int J Plast 151:103171

    Article  Google Scholar 

  53. Reddy KV, Pal S (2020) Shock velocity-dependent elastic-plastic collapse of pre-existing stacking fault tetrahedron in single crystal cu. Comput Mater Sci 172:109390

    Article  Google Scholar 

  54. Ma K, Chen J, Dongare AM (2021) Role of pre-existing dislocations on the shock compression and spall behavior in single-crystal copper at atomic scales. J Appl Phys 129(17):175901

    Article  Google Scholar 

  55. Sun Y, Zheng H, Geng Y, Li G, Xiao Y (2023) Molecular dynamics simulations of warm laser shock peening for monocrystalline nickel. Mater Today Commun 35:105626

    Article  Google Scholar 

  56. Xia W, Zhao X, Yue L, Zhang Z (2020) A review of composition evolution in Ni-based single crystal superalloys. J Mater Sci Technol 44:76–95

    Article  Google Scholar 

  57. Chen B, Li Y, Şopu D, Eckert J, Wu W (2023) Molecular dynamics study of shock-induced deformation phenomena and spallation failure in Ni-based single crystal superalloys. Int J Plast 162:103539

    Article  Google Scholar 

  58. Jarmakani H, Bringa E, Erhart P, Remington B, Wang Y, Vo N, Meyers M (2008) Molecular dynamics simulations of shock compression of nickel: from monocrystals to nanocrystals. Acta Mater 56(19):5584–5604

    Article  Google Scholar 

  59. Li W, Chen S, Aitken Z, Zhang Y-W (2023) Shock-induced deformation and spallation in CoCrFeMnNi high-entropy alloys at high strain-rates. Int J Plast 168:103691

    Article  Google Scholar 

  60. Xie Z, Jian W-R, Xu S, Beyerlein IJ, Zhang X, Wang Z, Yao X (2021) Role of local chemical fluctuations in the shock dynamics of medium entropy alloy CoCrNi. Acta Mater 221:117380

    Article  Google Scholar 

  61. Song S, Li H, Liu P, Duan M, Peng X (2023) Dynamic shock response of high-entropy alloy with elemental anomaly distribution. Int J Mech Sci 253:108408

    Article  Google Scholar 

  62. Xie H, Ma Z, Zhang W, Zhao H, Ren L (2023) Phase transition in shock compressed high-entropy alloy FeNiCrCoCu. Int J Mech Sci 238:107855

    Article  Google Scholar 

  63. Singh SK, Chaurasia A, Parashar A (2022) Atomistic simulations to study shock and ultrashort pulse response of high entropy alloy. Mater Today 62:7494–7500

    Google Scholar 

  64. Kadau K, Germann TC, Lomdahl PS, Holian BL (2005) Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals. Phys Rev B 72(6):064120

    Article  Google Scholar 

  65. Wang K, Xiao S, Deng H, Zhu W, Hu W (2014) An atomic study on the shock-induced plasticity and phase transition for iron-based single crystals. Int J Plast 59:180–198

    Article  Google Scholar 

  66. Zhang X, Wang K, Chen J, Hu W, Zhu W, Xiao S, Deng H, Cai M (2019) Shock-induced migration of asymmetry tilt grain boundary in iron bicrystal: a case study of \(\sigma\)3 [110]. Chin Phys B 28(12):126201

    Article  Google Scholar 

  67. Higginbotham A, Suggit M, Bringa EM, Erhart P, Hawreliak J, Mogni G, Park N, Remington B, Wark J (2013) Molecular dynamics simulations of shock-induced deformation twinning of a body-centered-cubic metal. Phys Rev B 88(10):104105

    Article  Google Scholar 

  68. Liu C, Xu C, Cheng Y, Chen X, Cai L (2015) Orientation-dependent responses of tungsten single crystal under shock compression via molecular dynamics simulations. Comput Mater Sci 110:359–367

    Article  Google Scholar 

  69. Kadau K, Cherne FJ, Ravelo R, Germann TC (2013) Shock-induced phase transformations in gallium single crystals by atomistic methods. Phys Rev B 88(14):144108

    Article  Google Scholar 

  70. Wu D, Zhu Y, Zhao L, Huang M, Li Z (2021) Atomistic investigation of mechanical response and deformation mechanism of bcc ta under double shock loading. J Appl Phys 129(17):175110

    Article  Google Scholar 

  71. Huang Y, Xiong Y, Li P, Li X, Xiao S, Deng H, Zhu W, Hu W (2019) Atomistic studies of shock-induced plasticity and phase transition in iron-based single crystal with edge dislocation. Int J Plast 114:215–226

    Article  Google Scholar 

  72. Kedharnath A, Kapoor R, Sarkar A (2022) Effect of tungsten addition on shock loading behavior in Ta-W system: a molecular dynamics study. Advances in structural integrity: structural integrity over multiple length scales. Springer, New York, pp 113–122

    Chapter  Google Scholar 

  73. Zong H, Lookman T, Ding X, Luo S-N, Sun J (2014) Anisotropic shock response of titanium: reorientation and transformation mechanisms. Acta Mater 65:10–18

    Article  Google Scholar 

  74. Rawat S, Mitra N (2021) 10–12 twinning in single-crystal titanium under shock loading. Philos Mag 101(7):836–850

    Article  Google Scholar 

  75. Zong H, He P, Ding X, Ackland GJ (2020) Nucleation mechanism for hcp\(\rightarrow\) BCC phase transformation in shock-compressed Zr. Phys Rev B 101(14):144105

    Article  Google Scholar 

  76. Jian Z, Chen Y, Xiao S, Wang L, Li X, Wang K, Deng H, Hu W (2022) Shock-induced plasticity and phase transformation in single crystal magnesium: an interatomic potential and non-equilibrium molecular dynamics simulations. J Phys 34(11):115401

    Google Scholar 

  77. Yang X, Xu S, Liu L (2022) The shock response and spall mechanism of Mg-Al-Zn alloy: molecular dynamics study. Acta Mech Solida Sin 35(3):495–503

    Article  Google Scholar 

  78. Luo S-N, Germann TC, Tonks DL, An Q (2010) Shock wave loading and spallation of copper bicrystals with asymmetric \(\sigma 3< 110>\) tilt grain boundaries. J Appl Phys 108(9):093526

    Article  Google Scholar 

  79. Han W, An Q, Luo S, Germann TC, Tonks D, Goddard WA III (2012) Deformation and spallation of shocked cu bicrystals with \(\sigma\) 3 coherent and symmetric incoherent twin boundaries. Phys Rev B 85(2):024107

    Article  Google Scholar 

  80. An Q, Han W, Luo S, Germann TC, Tonks D, Goddard WA III (2012) Left-right loading dependence of shock response of (111)//(112) cu bicrystals: deformation and spallation. J Appl Phys 111(5):053525

    Article  Google Scholar 

  81. Xue S, Fan Z, Lawal OB, Thevamaran R, Li Q, Liu Y, Yu K, Wang J, Thomas EL, Wang H et al (2017) High-velocity projectile impact induced 9r phase in ultrafine-grained aluminium. Nat Commun 8(1):1653

    Article  Google Scholar 

  82. Long X, Wang L, Li B, Zhu J, Luo S (2017) Shock-induced migration of \(\sigma 3< 110>\) grain boundaries in cu. J Appl Phys 121(4):045904

    Article  Google Scholar 

  83. Fensin S, Valone S, Cerreta E, Escobedo-Diaz J, Gray G, Kang K, Wang J (2012) Effect of grain boundary structure on plastic deformation during shock compression using molecular dynamics. Model Simul Mater Sci Eng 21(1):015011

    Article  Google Scholar 

  84. Long X, Liu X, Zhang W, Peng Y, Wang G (2020) Shock deformation and spallation of cu bicrystals with (1 1 1) twist grain boundaries. Comput Mater Sci 173:109411

    Article  Google Scholar 

  85. Kumar K, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51(19):5743–5774

    Article  Google Scholar 

  86. Konnur T, Reddy KV, Pal S (2021) Effect of variation in inclination angle of \(\sigma\) 5 tilt grain boundary on the shock response of Ni bicrystals. Appl Phys A 127(5):1–18

    Article  Google Scholar 

  87. Zhang X, Wang K, Zhu W, Chen J, Cai M, Xiao S, Deng H, Hu W (2018) Effect of grain boundaries on shock-induced phase transformation in iron bicrystals. J Appl Phys 123(4):045105

    Article  Google Scholar 

  88. Wang K, Chen J, Zhang X, Zhu W (2017) Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading. J Appl Phys 122(10):105107

    Article  Google Scholar 

  89. Wang S, Sui M, Chen Y, Lu Q, Ma E, Pei X, Li Q, Hu H (2013) Microstructural fingerprints of phase transitions in shock-loaded iron. Sci Rep 3(1):1086

    Article  Google Scholar 

  90. Zhang X, Chen J, Hu W, Zhu W, Xiao S, Deng H, Cai M (2019) Interactions of plasticity and phase transformation under shock in iron bicrystals. J Appl Phys 126(4):045901

    Article  Google Scholar 

  91. Chen J, Hahn E, Dongare A, Fensin S (2019) Understanding and predicting damage and failure at grain boundaries in BCC Ta. J Appl Phys 126(16):165902

    Article  Google Scholar 

  92. Zong H, Ding X, Lookman T, Sun J (2016) Twin boundary activated \(\alpha \rightarrow \omega\) phase transformation in titanium under shock compression. Acta Mater 115:1–9

    Article  Google Scholar 

  93. Zong H, Ding X, Lookman T, Li J, Sun J, Cerreta EK, Escobedo J, Addessio FL, Bronkhorst CA (2014) Collective nature of plasticity in mediating phase transformation under shock compression. Phys Rev B 89(22):220101

    Article  Google Scholar 

  94. Bringa EM, Caro A, Wang Y, Victoria M, McNaney JM, Remington BA, Smith RF, Torralva BR, Van Swygenhoven H (2005) Ultrahigh strength in nanocrystalline materials under shock loading. Science 309(5742):1838–1841

    Article  Google Scholar 

  95. Sichani MM, Spearot DE (2015) A molecular dynamics study of the role of grain size and orientation on compression of nanocrystalline cu during shock. Comput Mater Sci 108:226–232

    Article  Google Scholar 

  96. Ma W, Zhu W, Jing F (2010) The shock-front structure of nanocrystalline aluminum. Appl Phys Lett 97(12):121903

    Article  Google Scholar 

  97. Ma W, Zhu W, Hou Y (2013) A comparative study on shock compression of nanocrystalline al and cu: shock profiles and microscopic views of plasticity. J Appl Phys 114(16):163504

    Article  Google Scholar 

  98. Hu J, Chen Z (2021) Atomistic study of shock Hugoniot in columnar nanocrystalline copper. Comput Mater Sci 197:110635

    Article  Google Scholar 

  99. Luo S-N, Germann TC, Desai TG, Tonks DL, An Q (2010) Anisotropic shock response of columnar nanocrystalline Cu. J Appl Phys 107(12):123507

    Article  Google Scholar 

  100. Luu H-T, Ravelo RJ, Rudolph M, Bringa EM, Germann TC, Rafaja D, Gunkelmann N (2020) Shock-induced plasticity in nanocrystalline iron: large-scale molecular dynamics simulations. Phys Rev B 102(2):020102

    Article  Google Scholar 

  101. Wang K, Zhu W, Xiao S, Chen K, Deng H, Hu W (2015) Coupling between plasticity and phase transition of polycrystalline iron under shock compressions. Int J Plast 71:218–236

    Article  Google Scholar 

  102. Wu D, Chen K, Zhu Y, Zhao L, Huang M, Li Z (2021) Unveiling grain size effect on shock-induced plasticity and its underlying mechanisms in nano-polycrystalline Ta. Mech Mater 160:103952

    Article  Google Scholar 

  103. Gunkelmann N, Tramontina DR, Bringa EM, Urbassek HM (2014) Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron. New J Phys 16(9):093032

    Article  Google Scholar 

  104. Gunkelmann N, Bringa EM, Tramontina DR, Ruestes CJ, Suggit MJ, Higginbotham A, Wark JS, Urbassek HM (2014) Shock waves in polycrystalline iron: plasticity and phase transitions. Phys Rev B 89(14):140102

    Article  Google Scholar 

  105. Wang L, Li B, Deng X, Jian W, Shang M, Deng L, Zhang X, Tang J, Hu W (2019) Orientation and grain-boundary dependence of shock-induced plasticity and transformation in nanocrystalline Ti. Phys Rev B 99(17):174103

    Article  Google Scholar 

  106. Jian Z, Chen Y, Xiao S, Wang L, Li X, Wang K, Deng H, Hu W (2022) Molecular dynamic simulations of plasticity and phase transition in mg polycrystalline under shock compression. Appl Phys Express 15(1):015503

    Article  Google Scholar 

  107. Asay J, Mix L, Perry F (1976) Ejection of material from shocked surfaces. Appl Phys Lett 29(5):284–287

    Article  Google Scholar 

  108. Dekel E, Eliezer S, Henis Z, Moshe E, Ludmirsky A, Goldberg I (1998) Spallation model for the high strain rates range. J Appl Phys 84(9):4851–4858

    Article  Google Scholar 

  109. Thissell WR, Zurek AK, Tonks DL, Hixson RS (2000) Experimental quantitative damage measurements and void growth model predictions in the spallation of tantalum. AIP Conf Proc 505(1):451–454

    Article  Google Scholar 

  110. Polanskey CA, Ahrens TJ (1990) Impact spallation experiments: fracture patterns and spall velocities. Icarus 87(1):140–155

    Article  Google Scholar 

  111. Minich RW, Cazamias JU, Kumar M, Schwartz AJ (2004) Effect of microstructural length scales on spall behavior of copper. Metall Mater Trans A 35:2663–2673

    Article  Google Scholar 

  112. Moshe E, Eliezer S, Henis Z, Werdiger M, Dekel E, Horovitz Y, Maman S, Goldberg I, Eliezer D (2000) Experimental measurements of the strength of metals approaching the theoretical limit predicted by the equation of state. Appl Phys Lett 76(12):1555–1557

    Article  Google Scholar 

  113. Jarmakani H, Maddox B, Wei C, Kalantar D, Meyers M (2010) Laser shock-induced spalling and fragmentation in vanadium. Acta Mater 58(14):4604–4628

    Article  Google Scholar 

  114. Signor L, Dragon A, Roy G, De Rességuier T, Llorca F (2008) Dynamic fragmentation of melted metals upon intense shock wave loading. Some modelling issues applied to a tin target. Arch Mech 60(4):323–343

    Google Scholar 

  115. Stebnovskii S (1998) Experimental investigation of pulsed stretching of cavitating media. J Appl Mech Tech Phys 39(5):758–761

    Article  Google Scholar 

  116. Chen Y, Hu H, Li Q, Wang R, Tang T (2012) Experimental study of ejecta on lead surface at different loading rates and amplitudes. AIP Conf Proc 1426(1):1003–1006

    Article  Google Scholar 

  117. Chen Y, Hu H, Tang T, Ren G, Li Q, Wang R, Buttler WT (2012) Experimental study of ejecta from shock melted lead. J Appl Phys 111(5):053509

    Article  Google Scholar 

  118. Srinivasan S, Baskes M, Wagner G (2006) Spallation of single crystal nickel by void nucleation at shock induced grain junctions. J Mater Sci 41:7838–7842

    Article  Google Scholar 

  119. Owen G, Chapman D, Whiteman G, Stirk S, Millett J, Johnson S (2017) Spall behaviour of single crystal aluminium at three principal orientations. J Appl Phys 122(15):155102

    Article  Google Scholar 

  120. Turley W, Fensin SJ, Hixson R, Jones DR, La Lone B, Stevens G, Thomas S, Veeser LR (2018) Spall response of single-crystal copper. J Appl Phys 123(5):055102

    Article  Google Scholar 

  121. Li C, Yang K, Gao Y, Wang L (2022) Dislocation-dominated void nucleation in shock-spalled single crystal copper: mechanism and anisotropy. Int J Plast 155:103331

    Article  Google Scholar 

  122. Agarwal G, Dongare AM (2018) Defect and damage evolution during spallation of single crystal al: comparison between molecular dynamics and quasi-coarse-grained dynamics simulations. Comput Mater Sci 145:68–79

    Article  Google Scholar 

  123. Kanel G (2010) Spall fracture: methodological aspects, mechanisms and governing factors. Int J Fract 163:173–191

    Article  Google Scholar 

  124. Li C, Huang J, Tang X, Chai H, Xiao X, Feng Z, Luo S (2017) Effects of structural anisotropy on deformation and damage of a duplex stainless steel under high strain rate loading. Mater Sci Eng A 705:265–272

    Article  Google Scholar 

  125. Hahn EN, Fensin SJ, Germann TC, Gray GT III (2018) Orientation dependent spall strength of tantalum single crystals. Acta Mater 159:241–248

    Article  Google Scholar 

  126. Wang J, Wang F, Wu X, Xu Z, Yang X (2023) Orientation-induced anisotropy of plasticity and damage behavior in monocrystalline tantalum under shock compression. Vacuum 207:111679

    Article  Google Scholar 

  127. Xiang M, Hu H, Chen J (2013) Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies. J Appl Phys 113(14):144312

    Article  Google Scholar 

  128. Jiang C, Jian Z, Xiao S, Li X, Wang K, Deng H, Hu W (2022) Effect of vacancies on dynamic response and spallation in single-crystal magnesium by molecular dynamic simulation. Metals 12(2):215

    Article  Google Scholar 

  129. Agarwal G, Dongare AM (2016) Shock wave propagation and spall failure in single crystal mg at atomic scales. J Appl Phys 119(14):145901

    Article  Google Scholar 

  130. Wang X-X, He A-M, Zhou T-T, Wang P (2021) Spall damage in single crystal tin under shock wave loading: a molecular dynamics simulation. Mech Mater 160:103991

    Article  Google Scholar 

  131. Lv C, Wang G, Zhang X, Luo B, Luo N, Wu F, Wu H-A, Tan F, Zhao J, Liu C et al (2021) Spalling modes and mechanisms of shocked nanocrystalline NiTi at different loadings and temperatures. Mech Mater 161:104004

    Article  Google Scholar 

  132. Echeverria MJ, Galitskiy S, Mishra A, Dingreville R, Dongare AM (2021) Understanding the plasticity contributions during laser-shock loading and spall failure of cu microstructures at the atomic scales. Comput Mater Sci 198:110668

    Article  Google Scholar 

  133. Yang X, Zeng X, Wang F, Ding J, Zhao H, Xue B (2022) Spallation fracture dependence on shock intensity and loading duration in single-crystal aluminum. Comput Mater Sci 210:111060

    Article  Google Scholar 

  134. Liao Y, Xiang M, Zeng X, Chen J (2015) Molecular dynamics studies of the roles of microstructure and thermal effects in spallation of aluminum. Mech Mater 84:12–27

    Article  Google Scholar 

  135. Chandra S, Samal M, Chavan V (2022) Probing grain boundary dependence of damage evolution under shock loading in a variety of FCC metals. Phys Lett A 436:128091

    Article  Google Scholar 

  136. Madhavan S, Narayana PL, Warrier M (2023) Spall fracture in aluminum bicrystals: molecular dynamics study. Mater Today 87:164–169

    Google Scholar 

  137. Pham HH, Arman B, Luo S, Çağin T (2011) Shock compression and spallation of palladium bicrystals with a \(\sigma\) 5 grain boundary. J Appl Phys 109(8):086107

    Article  Google Scholar 

  138. Dremov V, Petrovtsev A, Sapozhnikov P, Smirnova M, Preston DL, Zocher MA (2006) Molecular dynamics simulations of the initial stages of spall in nanocrystalline copper. Phys Rev B 74(14):144110

    Article  Google Scholar 

  139. Rudd RE, Belak JF (2002) Void nucleation and associated plasticity in dynamic fracture of polycrystalline copper: an atomistic simulation. Comput Mater Sci 24(1–2):148–153

    Article  Google Scholar 

  140. Dongare AM, Rajendran AM, LaMattina B, Zikry MA, Brenner DW (2010) Atomic scale studies of spall behavior in nanocrystalline Cu. J Appl Phys 108(11):113518

    Article  Google Scholar 

  141. Luan D, Wang Y, Li M, Chen J (2022) The grain boundary effect on shock induced spallation of polycrystalline uranium. Int J Mech Sci 228:107491

    Article  Google Scholar 

  142. Thürmer D, Gunkelmann N (2022) Shock-induced spallation in a nanocrystalline high-entropy alloy: an atomistic study. J Appl Phys 131(6):065902

    Article  Google Scholar 

  143. Wu D, Zhu Y, Huang M, Zhao L, Li Z (2021) Molecular dynamics study on shock-induced spallation and damage evolution in nano-polycrystalline Ta: internal grain size effect vs external shock intensity effect. J Appl Phys 130(20):205104

    Article  Google Scholar 

  144. Ovid’Ko I, Valiev R, Zhu Y (2018) Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci 94:462–540

    Article  Google Scholar 

  145. Pande C, Cooper K (2009) Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Prog Mater Sci 54(6):689–706

    Article  Google Scholar 

  146. Yang X, Zhao H, Gao X, Chen Z, Zeng X, Wang F (2022) Molecular dynamics study on spallation fracture in single crystal and nanocrystalline tin. J Appl Phys 132(7):075903

    Article  Google Scholar 

  147. Mackenchery K, Valisetty RR, Namburu RR, Stukowski A, Rajendran AM, Dongare AM (2016) Dislocation evolution and peak spall strengths in single crystal and nanocrystalline cu. J Appl Phys 119(4):044301

    Article  Google Scholar 

  148. Chen J, Tschopp MA, Dongare AM (2017) Shock wave propagation and spall failure of nanocrystalline cu/ta alloys: effect of Ta in solid-solution. J Appl Phys 122(22):225901

    Article  Google Scholar 

  149. Gunkelmann N, Bringa EM, Urbassek HM (2015) Influence of phase transition on shock-induced spallation in nanocrystalline iron. J Appl Phys 118(18):185902

    Article  Google Scholar 

  150. Chen P, Wang X, Wang P, He A-M (2022) Shock response of pre-existing spall damage in copper. J Appl Phys 131(1):015903

    Article  Google Scholar 

  151. Wang J, Wu B, Wu F, Wang P, He A, Wu H (2022) Spall and recompression processes with double shock loading of polycrystalline copper. Mech Mater 165:104194

    Article  Google Scholar 

  152. Xiang M, Hu H, Chen J, Long Y (2013) Molecular dynamics simulations of micro-spallation of single crystal lead. Modell Simul Mater Sci Eng 21(5):055005

    Article  Google Scholar 

  153. Liao Y, Xiang M, Zeng X, Chen J (2014) Molecular dynamics study of the micro-spallation of single crystal tin. Comput Mater Sci 95:89–98

    Article  Google Scholar 

  154. Wang K, Zhang F, He A, Wang P (2019) An atomic view on spall responses of release melted lead induced by decaying shock loading. J Appl Phys 125(15):155107

    Article  Google Scholar 

  155. He L, Wang F, Zeng X, Yang X, Qi Z (2020) Atomic insights into shock-induced spallation of single-crystal aluminum through molecular dynamics modeling. Mech Mater 143:103343

    Article  Google Scholar 

  156. Tian X, Cui J, Yang M, Ma K, Xiang M (2020) Molecular dynamics simulations on shock response and spalling behaviors of semi-coherent \(\{\)111\(\}\) cu-al multilayers. Int J Mech Sci 172:105414

    Article  Google Scholar 

  157. Liao Y, Hong S, Ge L, Chen J, Xiang M (2022) Shock wave characteristics and spalling behavior of non-coherent Cu/Nb multilayers. Mech Mater 173:104439

    Article  Google Scholar 

  158. Zhu Y, Hu J, Huang S, Wang J, Luo G, Shen Q (2022) Molecular dynamics simulation on spallation of [111] Cu/Ni nano-multilayers: voids evolution under different shock pulse duration. Comput Mater Sci 202:110923

    Article  Google Scholar 

  159. Wu Y-C, Shao J-L, Zhan H (2022) Deformation and damage characteristics of copper/honeycomb-graphene under shock loading. Int J Mech Sci 230:107544

    Article  Google Scholar 

  160. Zhao S, Yin S, Liang X, Cao F, Yu Q, Zhang R, Dai L, Ruestes CJ, Ritchie RO, Minor AM (2023) Deformation and failure of the CrCoNi medium-entropy alloy subjected to extreme shock loading. Sci Adv 9(18):eadf8602

    Article  Google Scholar 

  161. Thürmer D, Zhao S, Deluigi OR, Stan C, Alhafez IA, Urbassek HM, Meyers MA, Bringa EM, Gunkelmann N (2022) Exceptionally high spallation strength for a high-entropy alloy demonstrated by experiments and simulations. J Alloys Compd 895:162567

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from National Science and Technology Major Project (J2019-IV-0014-0082), the Fundamental Research Funds for the Central Universities (NS2023054), National Youth Talents Program of China, and a project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. This work is partially supported by High Performance Computing Platform of Nanjing University of Aeronautics and Astronautics. Simulations were also performed on Hefei advanced computing center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qihua Gong or Min Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Gong, Q. & Yi, M. Molecular Dynamics Investigation of Shock-Induced Deformation Behavior and Failure Mechanism in Metallic Materials. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-023-10045-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-023-10045-8

Navigation