Skip to main content

Advertisement

Log in

Comparative Performance of Twelve Metaheuristics for Wind Farm Layout Optimisation

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This work bridges two research fields i.e. metaheuristics and wind farm layout design. Comparative performance of twelve metaheuristics (MHs) on wind farm layout optimisation (WFLO) was conducted. Four WFLO problems are proposed for benchmarking the various metaheuristics while the design problem is an attempt to simultaneously minimise wind farm cost and maximise wind farm totally produced power. Design variables are wind turbine placement with fixed and varied number of wind turbines. The Jansen’s wake model is used while two types of energy estimation with and without considering partially overshadowed wake areas are studied. The results obtained from using various MHs are statistically compared in terms of convergence and consistency while the best performer is obtained. Comparison results indicated that moth-flame optimisation (MFO) algorithm is the most efficient algorithms. The results obtained in this work are said to be the baseline for future study on WFLO using metahueristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Reddy SR (2020) Wind farm layout optimization (WindFLO): an advanced framework for fast wind farm analysis and optimization. Appl Energy 269:115090. https://doi.org/10.1016/j.apenergy.2020.115090

    Article  Google Scholar 

  2. Khan MJ, Mathew L (2020) Comparative study of optimization techniques for renewable energy system. Arch Comput Methods Eng 27(2):351–360. https://doi.org/10.1007/s11831-018-09306-8

    Article  Google Scholar 

  3. Shu ZR, Li QS, Chan PW (2015) Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function. Appl Energy 156:362–373. https://doi.org/10.1016/j.apenergy.2015.07.027

    Article  Google Scholar 

  4. Karad S, Thakur R (2019) Recent trends of control strategies for doubly fed induction generator based wind turbine systems: a comparative review. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-019-09367-3

    Article  Google Scholar 

  5. Hewitt S, Margetts L, Revell A (2018) Building a digital wind farm. Arch Comput Methods Eng 25(4):879–899. https://doi.org/10.1007/s11831-017-9222-7

    Article  MathSciNet  Google Scholar 

  6. Shourangiz-Haghighi A, Haghnegahdar MA, Wang L, Mussetta M, Kolios A, Lander M (2020) State of the art in the optimisation of wind turbine performance using CFD. Arch Comput Methods Eng 27(2):413–431. https://doi.org/10.1007/s11831-019-09316-0

    Article  Google Scholar 

  7. Veisi AA, Shafiei Mayam MH (2017) Effects of blade rotation direction in the wake region of two in-line turbines using Large Eddy Simulation. Appl Energy 197:375–392. https://doi.org/10.1016/j.apenergy.2017.04.013

    Article  Google Scholar 

  8. Gao X, Yang H, Lu L (2016) Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model. Appl Energy 174:192–200. https://doi.org/10.1016/j.apenergy.2016.04.098

    Article  Google Scholar 

  9. Mosetti G, Poloni C, Diviacco B (1994) Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J Wind Eng Ind Aerodyn 51(1):105–116. https://doi.org/10.1016/0167-6105(94)90080-9

    Article  Google Scholar 

  10. Wang Y, Liu H, Long H, Zhang Z, Yang S (2018) Differential evolution with a new encoding mechanism for optimizing wind farm layout. IEEE Trans Ind Inf 14(3):1040–1054. https://doi.org/10.1109/TII.2017.2743761

    Article  Google Scholar 

  11. Eroğlu Y, Seçkiner SU (2012) Design of wind farm layout using ant colony algorithm. Renew Energy 44:53–62. https://doi.org/10.1016/j.renene.2011.12.013

    Article  Google Scholar 

  12. Feng J, Shen WZ (2015) Solving the wind farm layout optimization problem using random search algorithm. Renew Energy 78:182–192. https://doi.org/10.1016/j.renene.2015.01.005

    Article  Google Scholar 

  13. Bilbao M, Alba E (2009) Simulated annealing for optimization of wind farm annual profit. In: 2009 2nd International symposium on logistics and industrial informatics, pp 1–5. https://doi.org/10.1109/LINDI.2009.5258656

  14. Chowdhury S, Zhang J, Messac A, Castillo L (2013) Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions. Renew Energy 52:273–282. https://doi.org/10.1016/j.renene.2012.10.017

    Article  Google Scholar 

  15. Patel J, Savsani V, Patel V, Patel R (2017) Layout optimization of a wind farm to maximize the power output using enhanced teaching learning based optimization technique. J Clean Prod 158:81–94. https://doi.org/10.1016/j.jclepro.2017.04.132

    Article  Google Scholar 

  16. Katic I, Højstrup J, Jensen NO (1987) A simple model for cluster efficiency. In: EWEC’86, vol. 1, p 5

  17. Frandsen S et al (2006) Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 9(1–2):39–53. https://doi.org/10.1002/we.189

    Article  Google Scholar 

  18. Larsen GC (2009) A simple stationary semi-analytical wake model. Risø National Laboratory for Sustainable Energy, Technical University of Denmark

  19. Ishihara T, Qian G-W (2018) A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects. J Wind Eng Ind Aerodyn 177:275–292. https://doi.org/10.1016/j.jweia.2018.04.010

    Article  Google Scholar 

  20. Bastankhah M, Porté-Agel F (2014) A new analytical model for wind-turbine wakes. Renew Energy 70:116–123. https://doi.org/10.1016/j.renene.2014.01.002

    Article  MATH  Google Scholar 

  21. Xie S, Archer C (2015) Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation. Wind Energy 18(10):1815–1838. https://doi.org/10.1002/we.1792

    Article  Google Scholar 

  22. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Socha K, Dorigo M (2008) Ant colony optimization for continuous domains. Eur J Oper Res 185(3):1155–1173. https://doi.org/10.1016/j.ejor.2006.06.046

    Article  MathSciNet  MATH  Google Scholar 

  24. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  25. Kennedy J, Eberhart R (1995) Particle swarm optimization. In Proceedings of ICNN’95 international conference on neural networks, vol. 4, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  26. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  27. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11(1):1–18. https://doi.org/10.1162/106365603321828970

    Article  Google Scholar 

  28. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  29. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  30. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  31. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  32. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp Swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  33. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  34. Wu X, Hu W, Huang Q, Chen C, Jacobson MZ, Chen Z (2020) Optimizing the layout of onshore wind farms to minimize noise. Appl Energy 267:114896. https://doi.org/10.1016/j.apenergy.2020.114896

    Article  Google Scholar 

  35. Shakoor R, Hassan MY, Raheem A, Wu Y-K (2016) Wake effect modeling: a review of wind farm layout optimization using Jensen׳s model. Renew Sustain Energy Rev 58:1048–1059. https://doi.org/10.1016/j.rser.2015.12.229

    Article  Google Scholar 

  36. Sethi JK, Deb D, Malakar M (2011) Modeling of a wind turbine farm in presence of wake interactions. In: 2011 international conference on energy, automation and signal, pp 1–6. https://doi.org/10.1109/ICEAS.2011.6147144

  37. Weisstein EW (2020) Circle-circle intersection. https://mathworld.wolfram.com/Circle-CircleIntersection.html. Accessed July 30 2020

  38. Paul S, Rather ZH (2019) A new bi-level planning approach to find economic and reliable layout for large-scale wind farm. IEEE Syst J 13(3):3080–3090. https://doi.org/10.1109/JSYST.2019.2891996

    Article  Google Scholar 

  39. Parada L, Herrera C, Flores P, Parada V (2017) Wind farm layout optimization using a Gaussian-based wake model. Renew Energy 107:531–541. https://doi.org/10.1016/j.renene.2017.02.017

    Article  Google Scholar 

  40. Tao S, Kuenzel S, Xu Q, Chen Z (2019) Optimal micro-siting of wind turbines in an offshore wind farm using Frandsen–Gaussian wake model. IEEE Trans Power Syst 34(6):4944–4954. https://doi.org/10.1109/TPWRS.2019.2916906

    Article  Google Scholar 

  41. Chen Y, Li H, Jin K, Song Q (2013) Wind farm layout optimization using genetic algorithm with different hub height wind turbines. Energy Convers Manage 70:56–65. https://doi.org/10.1016/j.enconman.2013.02.007

    Article  Google Scholar 

  42. Vasel-Be-Hagh A, Archer CL (2017) Wind farm hub height optimization. Appl Energy 195:905–921. https://doi.org/10.1016/j.apenergy.2017.03.089

    Article  Google Scholar 

  43. Abdulrahman M, Wood D (2017) Investigating the Power-COE trade-off for wind farm layout optimization considering commercial turbine selection and hub height variation. Renew Energy 102:267–278. https://doi.org/10.1016/j.renene.2016.10.038

    Article  Google Scholar 

  44. Chen K, Song MX, Zhang X, Wang SF (2016) Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm. Renew Energy 96:676–686. https://doi.org/10.1016/j.renene.2016.05.018

    Article  Google Scholar 

  45. Duan B, Wang J, Gu H (2014) Modified genetic algorithm for layout optimization of multi-type wind turbines. In: 2014 American control conference, pp 3633–3638. https://doi.org/10.1109/ACC.2014.6859416

  46. Romanuke VV (2019) Iterative power maximization by one-half cost dichotomy for optimizing wind farm deployment. KPI Sci News. https://doi.org/10.20535/kpi-sn.2019.4.177315

    Article  Google Scholar 

  47. Charhouni N, Sallaou M, Mansouri K (2019) Realistic wind farm design layout optimization with different wind turbines types. Int J Energy Environ Eng 10(3):307–318. https://doi.org/10.1007/s40095-019-0303-2

    Article  Google Scholar 

  48. MirHassani SA, Yarahmadi A (2017) Wind farm layout optimization under uncertainty. Renew Energy 107:288–297. https://doi.org/10.1016/j.renene.2017.01.063

    Article  Google Scholar 

  49. Turner SDO, Romero DA, Zhang PY, Amon CH, Chan TCY (2014) A new mathematical programming approach to optimize wind farm layouts. Renew Energy 63:674–680. https://doi.org/10.1016/j.renene.2013.10.023

    Article  Google Scholar 

  50. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958. https://doi.org/10.1109/TEVC.2009.2014613

    Article  Google Scholar 

  51. Tanabe R, Fukunaga A (2013) Evaluating the performance of SHADE on CEC 2013 benchmark problems. In: 2013 IEEE congress on evolutionary computation, pp 1952–1959. https://doi.org/10.1109/CEC.2013.6557798

Download references

Acknowledgements

The authors are grateful for the support from the Thailand Research Fund (RTA6180010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nantiwat Pholdee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunakote, T., Sabangban, N., Kumar, S. et al. Comparative Performance of Twelve Metaheuristics for Wind Farm Layout Optimisation. Arch Computat Methods Eng 29, 717–730 (2022). https://doi.org/10.1007/s11831-021-09586-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09586-7

Navigation