Skip to main content
Log in

Servo Control Strategies for Vibration-Control in Robotic Wire EDM Machining

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Exotic materials play a key role in high-end applications. Thus, Wire Electric Discharge Machining (WEDM) stands out due to superior surface roughness and high precision. Currently, WEDM is found in rigid bed-based CNC machines constraining the workpieces in geometry and size. Parallelly, the stochastic nature of WEDM and the lack of complete mathematical models make it complex to control. As a result, whenever the servo feed becomes faster than the material removal rate, short circuits and wire break occur. On the other hand, traditional machining using six-axis industrial robots (IR) have been extensively investigated for cost efficiency, improved envelope and virtually unlimited axis combination. However, the IR design offers low stiffness, facing severe vibrations in machining hard-to-cut materials, resulting in low accuracy, poor finishing, and lack of repeatability. Thus, IRs are not comparable to CNC. The present research reviews the ideal servo control strategies for a synergistic combination of a novel machining technic of WEDM working with an IR as the servo. Employing a theoretical analysis followed by a series of simulations, it is demonstrated how the combination can be successfully controlled by frequency modulation, delivering a robotic process able to machine any hard-to-cut conductive material yet free of vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rahul AK, Datta S, Biswal BB, Mahapatra SS (2017) Machining performance optimization for electro-discharge machining of Inconel 601, 625, 718 and 825: an integrated optimization route combining satisfaction function, fuzzy inference system and Taguchi approach. J Braz Soc Mech Sci Eng 39(9):3499–3527. https://doi.org/10.1007/s40430-016-0659-7

    Article  Google Scholar 

  2. Chuangwen X, Jianming D, Yuzhen C, Huaiyuan L, Zhicheng S, Jing X (2018) The relationships between cutting parameters, tool wear, cutting force and vibration. Adv Mech Eng 10(1):1687814017750434. https://doi.org/10.1177/1687814017750434

    Article  Google Scholar 

  3. Wu Q, Xie D-J, Si Y, Zhang Y-D, Li L, Zhao Y-X (2018) Simulation analysis and experimental study of milling surface residual stress of Ti-10V-2Fe-3Al. J Manuf Process 32:530–537. https://doi.org/10.1016/j.jmapro.2018.03.015

    Article  Google Scholar 

  4. Moussaoui K, Mousseigne M, Senatore J, Chieragatti R (2015) The effect of roughness and residual stresses on fatigue life time of an alloy of titanium. Int J Adv Manuf Technol 78(1):557–563. https://doi.org/10.1007/s00170-014-6596-7

    Article  Google Scholar 

  5. Huang JT, Liao YS (2003) Optimization of machining parameters of Wire-EDM based on Grey relational and statistical analyses. Int J Prod Res 41(8):1707–1720. https://doi.org/10.1080/1352816031000074973

    Article  MATH  Google Scholar 

  6. Bhattacharyya GKSBP (2017) Electrical Discharge Micro-hole Machining Process of Ti–6Al–4V: Improvement of Accuracy and Performance. In: Kibria G, Bhattacharyya B, Davim J (eds) Non-traditional micromachining processes. Materials forming, machining and tribology. Springer. https://doi.org/10.1007/978-3-319-52009-4_3

  7. Konig W (1991) Sparks machine ceramics. Powder Metall Int 23(2):96–100

    Google Scholar 

  8. Nani V-M (2017) Complex phenomena study in dielectric fluid from gap during the W-EDM processing in ultrasonic field. Int J Adv Manuf Technol 92(1–4):197–215. https://doi.org/10.1007/s00170-017-0114-7

    Article  Google Scholar 

  9. Czelusniak T, Higa CF, Torres RD, Laurindo CAH, de Paiva Júnior JMF, Lohrengel A, Amorim FL (2018) Materials used for sinking EDM electrodes: a review. J Braz Soc Mech Sci Eng 41(1):14. https://doi.org/10.1007/s40430-018-1520-y

    Article  Google Scholar 

  10. Zhang GZHZ (2019) Study on the effect of three dimensional wire vibration on WEDM based on a novel thermophysical model. Int J Adv Manuf Technol 100(5–8):2089–2101. https://doi.org/10.1007/s00170-018-2796-x

    Article  Google Scholar 

  11. Das M, Dixit US (2018) Advanced machining processes. In: Davim J (ed) Introduction to mechanical engineering. Materials forming, machining and tribology. Springer. https://doi.org/10.1007/978-3-319-78488-5_9

  12. Dave HK, Mathai VJ, Mayanak MK, Raval HK, Desai KP (2016) Study on effect of process parameters on overcut and tool wear rate during micro-electro-discharge slotting process. Int J Adv Manuf Technol 85(9):2049–2060. https://doi.org/10.1007/s00170-015-7594-0

    Article  Google Scholar 

  13. Gjeldum N, Bilic B, Veza I (2015) Investigation and modelling of process parameters and workpiece dimensions influence on material removal rate in CWEDT process. Int J Comput Integr Manuf 28(7):715–728. https://doi.org/10.1080/0951192x.2014.900868

    Article  Google Scholar 

  14. Ciwen H, Jinsheng Z, Jianyong L (2018) Ultra-long wire reciprocated-WEDM with dual tensile reels winded. Procedia CIRP 68:115–119. https://doi.org/10.1016/j.procir.2017.12.046

    Article  Google Scholar 

  15. Kumar S, Mitra B, Dhanabalan S (2018) The state of art: revolutionary 5-axis CNC wire EDM and its recent developments. Int J Manag IT Eng 8(6):328–353

    Google Scholar 

  16. Kinoshita N, Fukui M, Gamo G (1982) Control of Wire-EDM preventing electrode from breaking. CIRP Ann 31(1):111–114. https://doi.org/10.1016/S0007-8506(07)63279-X

    Article  Google Scholar 

  17. Mitsubish FA Series (2020) Wire-cut EDM FA advance series. FA Series. Tokio, Japan

  18. Mohammad AEK, Wang D (2015) A novel mechatronics design of an electrochemical mechanical end-effector for robotic-based surface polishing. In: 2015 IEEE/SICE International Symposium on System Integration (SII). IEEE, pp 127–133

  19. Petko M, Gac K, Góra G, Karpiel G, Ochoński J, Kobus K (2016) CNC system of the 5-axis hybrid robot for milling. Mechatronics 37(Supplement C):89–99. https://doi.org/10.1016/j.mechatronics.2016.03.001

    Article  Google Scholar 

  20. Khalick Mohammad AE, Hong J, Wang D (2017) Polishing of uneven surfaces using industrial robots based on neural network and genetic algorithm. Int J Adv Manuf Technol 93(1–4):1463–1471. https://doi.org/10.1007/s00170-017-0524-6

    Article  Google Scholar 

  21. Jovanovic M, Rakovic M, Tepavcevic B, Borovac B, Nikolic M (2017) Robotic fabrication of freeform foam structures with quadrilateral and puzzle shaped panels. Autom Constr 74(Supplement C):28–38. https://doi.org/10.1016/j.autcon.2016.11.003

    Article  Google Scholar 

  22. Song YX, Liang W, Yang Y (2012) A method for grinding removal control of a robot belt grinding system. J Intell Manuf 23(5):1903–1913. https://doi.org/10.1007/s10845-011-0508-6

    Article  Google Scholar 

  23. Song HC, Song JB (2013) Precision robotic deburring based on force control for arbitrarily shaped workpiece using CAD model matching. Int J Precis Eng Manuf 14(1):85–91. https://doi.org/10.1007/s12541-013-0013-2

    Article  MathSciNet  Google Scholar 

  24. Ji W, Wang LH (2019) Industrial robotic machining: a review. Int J Adv Manuf Technol 103(1–4):1239–1255. https://doi.org/10.1007/s00170-019-03403-z

    Article  Google Scholar 

  25. Jonsson M, Stolt A, Robertsson A, von Gegerfelt S, Nilsson K (2013) On force control for assembly and deburring of castings. Prod Eng Res Devel 7(4):351–360. https://doi.org/10.1007/s11740-013-0459-1

    Article  Google Scholar 

  26. Schneider U, Ansaloni M, Drust M, Leali F, Verl A (2013) Experimental investigation of sources of error in robot machining. In: Robotics in smart manufacturing. Springer, Berlin Heidelberg, pp 14–26

  27. Leali F, Pellicciari M, Pini F, Berselli G, Vergnano A (2013) An offline programming method for the robotic deburring of aerospace components. In: Robotics in smart manufacturing. Springer Berlin Heidelberg, pp 1–13

  28. Søndergaard A, Feringa J, Stan F, Maier D (2018) Robotic abrasive wire cutting of polymerized styrene formwork systems for cost-effective realization of topology-optimized concrete structures. Constr Robot 2(1–4):81–92. https://doi.org/10.1007/s41693-018-0016-8

    Article  Google Scholar 

  29. Mao Y, Zhao H, Zhao X, Ding H (2017) Trajectory and force generation with multi-constraints for robotic belt grinding. In: Intelligent robotics and applications. Springer, Cham, pp 14–23

  30. Lin Y, Zhao H, Ding H (2017) Posture optimization methodology of 6R industrial robots for machining using performance evaluation indexes. Robot Comput Integr Manuf 48:59–72. https://doi.org/10.1016/j.rcim.2017.02.002

    Article  Google Scholar 

  31. Xie H, Li W, Yin Z (2018) Posture optimization based on both joint parameter error and stiffness for robotic milling. In: Intelligent robotics and applications. Springer International Publishing, Cham, pp 277–286

  32. Ding Y, Min X, Fu W, Liang Z (2018) Research and application on force control of industrial robot polishing concave curved surfaces. Proc Inst Mech Eng Part B J Eng Manuf 233(6):1674–1686. https://doi.org/10.1177/0954405418802309

    Article  Google Scholar 

  33. Domroes F, Krewet C, Kuhlenkoetter BJMME (2013) Application and analysis of force control strategies to deburring and grinding. Mod Mech Eng 3(02):11

    Article  Google Scholar 

  34. Chen F, Zhao H, Li DW, Chen L, Tan C, Ding H (2019) Robotic grinding of a blisk with two degrees of freedom contact force control. Int J Adv Manuf Technol 101(1–4):461–474. https://doi.org/10.1007/s00170-018-2925-6

    Article  Google Scholar 

  35. Diao S, Chen X, Luo J (2018) Development and experimental evaluation of a 3D vision system for grinding robot. Sensors (Basel) 18(9):3078. https://doi.org/10.3390/s18093078

    Article  Google Scholar 

  36. Zhang G, Li H, Zhang Z, Ming W, Wang N, Huang Y (2016) Vibration modeling and analysis of wire during the WEDM process. Mach Sci Technol 20(2):173–186. https://doi.org/10.1080/10910344.2015.1085312

    Article  Google Scholar 

  37. Sarkar ASS (2019) Influence of different control strategies in wire electrical discharge machining of varying height job. Int J Adv Manuf Technol 100(5–8):1299–1309. https://doi.org/10.1007/s00170-016-9045-y

    Article  Google Scholar 

  38. Yan M-T (2010) An adaptive control system with self-organizing fuzzy sliding mode control strategy for micro wire-EDM machines. Int J Adv Manuf Technol 50(1):315–328. https://doi.org/10.1007/s00170-009-2481-1

    Article  Google Scholar 

  39. Rajurkar KP, Wang WM, Lindsay RP (1991) On-line monitor and control for wire breakage in WEDM. CIRP Ann 40(1):219–222. https://doi.org/10.1016/S0007-8506(07)61972-6

    Article  Google Scholar 

  40. Rajurkar KP, Wang WM, McGeough JA (1994) WEDM identification and adaptive control for variable-height components. CIRP Ann 43(1):199–202. https://doi.org/10.1016/S0007-8506(07)62195-7

    Article  Google Scholar 

  41. Rajurkar KP, Wang WM, Zhao WS (1997) WEDM-adaptive control with a multiple input model for indentification of workpiece height. CIRP Ann 46(1):147–150. https://doi.org/10.1016/S0007-8506(07)60795-1

    Article  Google Scholar 

  42. Yan MT, Liao YS (1998) Adaptive control of the WEDM process using the fuzzy control strategy. J Manuf Syst 17(4):263–274. https://doi.org/10.1016/S0278-6125(98)80074-5

    Article  Google Scholar 

  43. Yan MT, Li HP, Liang JF (1999) The application of fuzzy control strategy in servo feed control of wire electrical discharge machining. Int J Adv Manuf Technol 15(11):780–784. https://doi.org/10.1007/s001700050131

    Article  Google Scholar 

  44. Liao YS, Woo JC (2000) Design of a fuzzy controller for the adaptive control of WEDM process. Int J Mach Tools Manuf 40(15):2293–2307. https://doi.org/10.1016/S0890-6955(00)00036-5

    Article  Google Scholar 

  45. Yan MT, Liao YS, Chang CC (2001) On-line estimation of workpiece height by using neural networks and hierarchical adaptive control of WEDM. Int J Adv Manuf Technol 18(12):884–891. https://doi.org/10.1007/PL00003956

    Article  Google Scholar 

  46. Liao YS, Chuang TJ, Yu YP (2013) On-line workpiece height estimation and its application in servo feed control of WEDM process. Procedia CIRP 6:226–231. https://doi.org/10.1016/j.procir.2013.03.050

    Article  Google Scholar 

  47. Han F, Wachi S, Kunieda M (2004) Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control. Precis Eng 28(4):378–385. https://doi.org/10.1016/j.precisioneng.2003.11.005

    Article  Google Scholar 

  48. Liao YS, Yu YP (2004) Study of specific discharge energy in WEDM and its application. Int J Mach Tools Manuf 44(12):1373–1380. https://doi.org/10.1016/j.ijmachtools.2004.04.008

    Article  Google Scholar 

  49. Yan M-T, Chien H-T (2007) Monitoring and control of the micro wire-EDM process. Int J Mach Tools Manuf 47(1):148–157. https://doi.org/10.1016/j.ijmachtools.2006.02.006

    Article  Google Scholar 

  50. Dekeyser W, Snoeys R, Jennes M (1988) Expert system for wire cutting EDM, based on pulse classification and thermal modeling. Robot Comput Integr Manuf 4(1):219–224. https://doi.org/10.1016/0736-5845(88)90080-4

    Article  Google Scholar 

  51. Lee WM, Liao YS (2007) Adaptive control of the WEDM process using a self-tuning fuzzy logic algorithm with grey prediction. Int J Adv Manuf Technol 34(5):527–537. https://doi.org/10.1007/s00170-006-0623-2

    Article  Google Scholar 

  52. Ishibashi Y, Komori A (1994) Wire electric discharge machine having alterable discharge period

  53. Yang KTH-H (2015) A new approach for Micro-WEDM control based on Real-Time estimation of material removal rate. Int J Precis Eng Manuf 16(2):241–246. https://doi.org/10.1007/s12541-015-0032-2

    Article  Google Scholar 

  54. Zhidong L, Haoran C, Huijun P, Mingbo Q, Zongjun T (2015) Automatic control of WEDM servo for silicon processing using current pulse probability detection. Int J Adv Manuf Technol 76(1–4):367–374. https://doi.org/10.1007/s00170-014-6252-2

    Article  Google Scholar 

  55. Trung Kien H (2017) Development of a WEDM system with high machining efficiency. In: 2017 international conference on system science and engineering (ICSSE), 21–23 July 2017, pp 397–399. https://doi.org/10.1109/ICSSE.2017.8030904

  56. Huang G, Xia W, Qin L, Zhao W (2018) Online workpiece height estimation for reciprocated traveling wire EDM based on support vector machine. Procedia CIRP 68:126–131. https://doi.org/10.1016/j.procir.2017.12.034

    Article  Google Scholar 

  57. Li C, Liu Z, Fang L, Pan H, Qiu M (2018) Super-high-thickness high-speed wire electrical discharge machining. J Adv Manuf Technol 95(5):1805–1818. https://doi.org/10.1007/s00170-017-1246-5

    Article  Google Scholar 

  58. Zengxi P, Hui Z (2007) Analysis and suppression of chatter in robotic machining process. In: 2007 international conference on control, automation and systems, 17–20 Oct, pp 595–600. https://doi.org/10.1109/ICCAS.2007.4407093

  59. Moradi H, Bakhtiari-Nejad F, Movahhedy MR (2008) Tuneable vibration absorber design to suppress vibrations: an application in boring manufacturing process. J Sound Vib 318(1):93–108. https://doi.org/10.1016/j.jsv.2008.04.001

    Article  Google Scholar 

  60. Yuan L, Pan ZX, Ding DH, Sun SS, Li WH (2018) A review on chatter in robotic machining process regarding both regenerative and mode coupling mechanism. IEEE-ASME Trans Mechatron 23(5):2240–2251. https://doi.org/10.1109/Tmech.2018.2864652

    Article  Google Scholar 

  61. Wang G, Dong H, Guo Y, Ke Y (2017) Chatter mechanism and stability analysis of robotic boring. J Int J Adv Manuf Technol 91(1):411–421. https://doi.org/10.1007/s00170-016-9731-9

    Article  Google Scholar 

  62. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376. https://doi.org/10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  63. Zhang XJ, Xiong CH, Ding Y, Feng MJ, Lun Xiong Y (2012) Milling stability analysis with simultaneously considering the structural mode coupling effect and regenerative effect. Int J Mach Tools Manuf 53(1):127–140. https://doi.org/10.1016/j.ijmachtools.2011.10.004

    Article  Google Scholar 

  64. Gasparetto A (1998) A system theory approach to mode coupling chatter in machining. J Dyn Syst Meas Contr 120(4):545–547. https://doi.org/10.1115/1.2801501

    Article  Google Scholar 

  65. Pan ZX, Zhang H, Zhu ZQ, Wang JJ (2006) Chatter analysis of robotic machining process. J Mater Process Technol 173(3):301–309. https://doi.org/10.1016/j.jmatprotec.2005.11.033

    Article  Google Scholar 

  66. Wang Z, Keogh P (2017) Active vibration control for robotic machining. In: ASME 2017 International mechanical engineering congress and exposition, V002T02A079. https://doi.org/10.1115/imece2017-71670

  67. Chen Z, Huang Y, Huang H, Zhang Z, Zhang G (2015) Three-dimensional characteristics analysis of the wire-tool vibration considering spatial temperature field and electromagnetic field in WEDM. Int J Mach Tools Manuf 92:85–96. https://doi.org/10.1016/j.ijmachtools.2015.03.003

    Article  Google Scholar 

  68. Kamei T, Okada A, Okamoto Y (2016) High-speed observation of thin wire movement in fine wire EDM. Procedia CIRP 42:596–600. https://doi.org/10.1016/j.procir.2016.02.266

    Article  Google Scholar 

  69. Mingqi L, Minghui L, Guangyao X (2005) Study on the variations of form and position of the wire electrode in WEDM-HS. Int J Adv Manuf Technol 25(9):929–934. https://doi.org/10.1007/s00170-003-1915-4

    Article  Google Scholar 

  70. ABB-IRB120 (2020) ABB’s smallest robot—for flexible and compact. Document ID: 3HAC035960-001—revision Q. Zurich, Switzerland

  71. CATIA V5-6 (2020) CATIA V5-6. Vélizy-Villacoublay, France

  72. ANSYS R19 (2020) ANSYS R19—Finite Element Analysis (FEA) Software. R19. Canonsburg, Pennsylvania, USA

Download references

Funding

Lately, no funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Tadeu Almeida.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, S.T., Mo, J.P.T., Bil, C. et al. Servo Control Strategies for Vibration-Control in Robotic Wire EDM Machining. Arch Computat Methods Eng 29, 113–127 (2022). https://doi.org/10.1007/s11831-021-09570-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09570-1

Navigation