Skip to main content
Log in

Trefftz Methods and Taylor Series

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The paper discusses Trefftz discretization techniques with a focus on their coupling with shape functions computed by the method of Taylor series. The paper highlights are, on one hand the control of ill-conditioning and the solving of large scale problems, on the other hand the applications to non-linear Partial Differential Equations. Indeed, despite excellent convergence properties, the practical use of Trefftz methods remains very limited because of their difficulty in treating nonlinearities and large systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akpama K, Koutsawa Y, Potier-Ferry M (2014) A Taylor meshless method for hyperelasticity. In: Idelsohn S, Onate E (eds) Proceedings of the 11th world congress on computational mechanics, WCCM XI, 2014, Barcelona, Spain

  2. Alves CJ, Silvestre AL (2018) On the application of the method of fundamental solutions to nonlinear partial differential equations. Eng Anal Bound Elem 92:267–274

    MathSciNet  MATH  Google Scholar 

  3. Askour O, Tri A, Braikat B, Zahrouni H, Potier-Ferry M (2018) Method of fundamental solutions and high order algorithm to solve nonlinear elastic problems. Eng Anal Bound Elem 89:25–35

    MathSciNet  MATH  Google Scholar 

  4. Babus̆ka I, Banerjee U (2012) Stable generalized finite element method (SGFEM). Comput Method Appl M 201:91–111

    MathSciNet  MATH  Google Scholar 

  5. Baker GA, Graves-Morris PR (1996) Padé approximants. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  6. Balakrishnan K, Ramachandran PA (1999) A particular solution Trefftz method for non-linear Poisson problems in heat and mass transfer. J Comput Phys 150(1):239–267

    MathSciNet  MATH  Google Scholar 

  7. Balakrishnan K, Ramachandran PA (2001) Osculatory interpolation in the method of fundamental solution for nonlinear Poisson problems. J Comput Phys 172(1):1–18

    MathSciNet  MATH  Google Scholar 

  8. Brezinski C (2000) Convergence acceleration during the 20th century. J Comput Appl Math 122(1–2):1–21

    MathSciNet  MATH  Google Scholar 

  9. Bussamra FLS, Pimenta PM, de Freitas JAT (2001) Hybrid-Trefftz stress elements for three-dimensional elastoplasticity. Comput Assist Mech Eng Sci 8:235–246

    MATH  Google Scholar 

  10. Bustamante CA, Power H, Florez WF (2013) A global meshless collocation particular solution method for solving the two-dimensional Navier–Stokes system of equations. Comput Math Appl 65(12):1939–1955

    MathSciNet  MATH  Google Scholar 

  11. Bustamante CA, Power H, Florez WF (2015) Schwarz alternating domain decomposition approach for the solution of two-dimensional Navier–Stokes flow problems by the method of approximate particular solutions. Numer Meth Part D E 31(3):777–797

    MathSciNet  MATH  Google Scholar 

  12. Cadou JM, Guevel Y, Girault G (2012) Numerical tools for the stability analysis of 2D flows: application to the two-and four-sided lid-driven cavity. Fluid Dyn Res 44(3):031403

    MathSciNet  MATH  Google Scholar 

  13. Cattabiani A (2016) Simulation of low- and mid-frequency response of shocks with a frequency approach. Ph.D. diss, Université Paris-Saclay

  14. Chen CS, Cho HA, Golberg MA (2006) Some comments on the ill-conditioning of the method of fundamental solutions. Eng Anal Bound Elem 30(5):405–410

    MATH  Google Scholar 

  15. Chen CS, Fan CM, Monroe J (2008) The method of fundamental solutions for solving elliptic partial differential equations with variable coefficients. In: Chen CS, Karageorghis A, Smyrlis YS (eds) The method of fundamental solutions—a meshless method. Dynamic Publishers, Atlanta, pp 75–105

    Google Scholar 

  16. Cheng AHD, Golberg MA, Kansa EJ, Zammito G (2003) Exponential convergence and Hc multiquadric collocation method for partial differential equations. Numer Meth Part D E 19(5):571–594

    MATH  Google Scholar 

  17. Cheung YK, Jin WG, Zienkiewicz OC (1989) Direct solution procedure for solution of harmonic problems using complete, non-singular, Trefftz functions. Int J Numer Meth Bio 5(3):159–169

    MATH  Google Scholar 

  18. Chu F, Wang L, Zhong Z (2014) Finite subdomain radial basis collocation method. Comput Mech 54(2):235–254

    MathSciNet  MATH  Google Scholar 

  19. Cochelin B (1994) A path-following technique via an asymptotic-numerical method. Comput Struct 53:1181–1192

    MATH  Google Scholar 

  20. Cochelin B, Damil N, Potier-Ferry M (1994) Asymptotic-numerical methods and Padé approximants for non-linear elastic structures. Int J Numer Meth Eng 37(7):1187–1213

    MATH  Google Scholar 

  21. de Freitas JAT (1998) Formulation of elastostatic hybrid-Trefftz stress elements. Comput Method Appl M 153(1–2):127–151

    MathSciNet  MATH  Google Scholar 

  22. de Freitas JAT, Wang ZM (1998) Hybrid-Trefftz stress elements for elastoplasticity. Int J Numer Meth Eng 43(4):655–683

    MATH  Google Scholar 

  23. Deckers E, Atak O, Coox L, D’Amico R, Devriendt H, Jonckheere S, Koo K, Pluymers B, Vandepitte D, Desmet W (2014) The wave based method: an overview of 15 years of research. Wave Motion 51(4):550–565

    MathSciNet  MATH  Google Scholar 

  24. Desmet W (1998) A wave based prediction technique for coupled vibro-acoustic analysis. Ph.D. diss, Katholieke Universiteit Leuven

  25. Elhage-Hussein A, Potier-Ferry M, Damil N (2000) A numerical continuation method based on Padé approximants. Int J Solids Struct 37(46–47):6981–7001

    MATH  Google Scholar 

  26. Fairweather G, Karageorghis A (1998) The method of fundamental solutions for elliptic boundary value problems. Adv Comput Math 9(1–2):69

    MathSciNet  MATH  Google Scholar 

  27. Golberg MA (1995) The method of fundamental solutions for Poisson’s equation. Eng Anal Bound Elem 16(3):205–213

    Google Scholar 

  28. Granados JM, Power H, Bustamante CA, Flórez WF, Hill AF (2018) A global particular solution meshless approach for the four-sided lid-driven cavity flow problem in the presence of magnetic fields. Comput Fluids 160:120–137

    MathSciNet  MATH  Google Scholar 

  29. Griewank A, Walther A (2008) Evaluating derivatives: principles and techniques of algorithmic differentiation. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  30. Griewank A, Utke J, Walther A (2000) Evaluating higher derivative tensors by forward propagation of univariate Taylor series. Math Comput 69(231):1117–1130

    MathSciNet  MATH  Google Scholar 

  31. Gupta V, Duarte CA, Babus̆ka I, Banerjee U (2013) A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics. Comput Method Appl M 266:23–39

    MathSciNet  MATH  Google Scholar 

  32. Hecht F (2012) New development in FreeFem++. J Numer Math 20(3–4):251–265

    MathSciNet  MATH  Google Scholar 

  33. Herrera I (1984) Trefftz method. In: Brebbia CA (ed) Topics in boundary element method. Basic principles and applications. Springer, Berlin, pp 225–253

    Google Scholar 

  34. Herrera I (2000) Trefftz method: a general theory. Numer Meth Part D E 16(6):561–580

    MathSciNet  MATH  Google Scholar 

  35. Hiptmair R, Moiola A, Perugia I (2016) Plane wave discontinuous Galerkin methods: exponential convergence of the hp-version. Found Comput Math 16(3):637–675

    MathSciNet  MATH  Google Scholar 

  36. Hiptmair R, Moiola A, Perugia I (2016) A survey of Trefftz methods for the Helmholtz equation. In: Barrenechea GR, Brezzi F, Cangiani A, Georgoulis EH (eds) In building bridges: connections and challenges in modern approaches to numerical partial differential equationss. Springer, Berlin, pp 237–278

    Google Scholar 

  37. Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries. Proc R Soc Lond A Math Phys Eng Sci 466:1551–1597

    MathSciNet  MATH  Google Scholar 

  38. Idelsohn SR, Onate E (2006) To mesh or not to mesh. That is the question. Comput Method Appl M 195(37–40):4681–4696

    MathSciNet  MATH  Google Scholar 

  39. Ingber MS, Chen CS, Tanski JA (2004) A mesh free approach using radial basis functions and parallel domain decomposition for solving three-dimensional diffusion equations. Int J Numer Meth Eng 60(13):2183–2201

    MathSciNet  MATH  Google Scholar 

  40. Jankowska MA, Kolodziej JA (2015) On the application of the method of fundamental solutions for the study of the stress state of a plate subjected to elastic-plastic deformation. Int J Solids Struct 67:139–150

    Google Scholar 

  41. Jankowska MA, Kolodziej JA (2016) A study of elastic-plastic deformation in the plate with the incremental theory and the meshless methods. J Mech Mater Struct 11(1):41–60

    MathSciNet  Google Scholar 

  42. Jankowska MA, Karageorghis A, Chen CS (2018) Improved Kansa RBF method for the solution of nonlinear boundary value problems. Eng Anal Bound Elem 87:173–183

    MathSciNet  MATH  Google Scholar 

  43. Jirousek J, Leon N (1977) A powerful finite element for plate bending. Comput Method Appl M 12(1):77–96

    MathSciNet  MATH  Google Scholar 

  44. Jirousek J, Teodorescu P (1982) Large finite elements method for the solution of problems in the theory of elasticity. Comput Struct 15(5):575–587

    MathSciNet  MATH  Google Scholar 

  45. Jirousek J, Venkatesh A (1992) Hybrid Trefftz plane elasticity elements with p-method capabilities. Int J Numer Meth Eng 35(7):1443–1472

    MATH  Google Scholar 

  46. Jirousek J, Zieliński AP (1997) Survey of Trefftz-type element formulations. Comput Struct 63(2):225–242

    MATH  Google Scholar 

  47. Kansa EJ, Hon YC (2000) Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Comput Math Appl 39(7–8):123–137

    MathSciNet  MATH  Google Scholar 

  48. Katsikadelis JT (1984) The analog equation method. In: Brebbia CA (ed) A powerful BEM-based solution technique for solving linear and nonlinear engineering problems. WIT Press, Southampton, pp 167–182

    MATH  Google Scholar 

  49. Katsikadelis JT (2002) The analog equation method: a boundary-only integral equation method for nonlinear static and dynamic problems in general bodies. Theor Appl 27:13–38

    MathSciNet  MATH  Google Scholar 

  50. Katsikadelis JT, Nerantzaki MS (1999) The boundary element method for nonlinear problems. Eng Anal Bound Elem 23(5–6):365–373

    MATH  Google Scholar 

  51. Kita E, Kamiya N (1995) Trefftz method: an overview. Adv Eng Softw 24(1–3):3–12

    MATH  Google Scholar 

  52. Kolodziej JA, Zieliński AP (2009) Boundary collocation techniques and their application in engineering. WIT Press, Southampton

    Google Scholar 

  53. Ku CY, Xiao JE, Liu CY, Yeih W (2016) On the accuracy of the collocation Trefftz method for solving two-and three-dimensional heat equations. Numer Heat Transf B-Fundam 69(4):334–350

    Google Scholar 

  54. Ladevèze P (1996) A new computational approach for structure vibrations in the medium frequency range. CR Acad Sci II B 322(12):849–856

    MATH  Google Scholar 

  55. Ladevèze P (2016) Les méthodes à base d’ondes pour le calcul en MF et HF. In: Congrès Français d’Acoustique, Le Mans

  56. Ladevèze P, Chevreuil M (2005) A new computational method for transient dynamics including the low-and the medium-frequency ranges. Int J Numer Meth Eng 64(4):503–527

    MATH  Google Scholar 

  57. Ladevèze P, Arnaud L, Rouch P, Blanzé C (2001) The variational theory of complex rays for the calculation of medium-frequency vibrations. Eng Comput 18(1/2):193–214

    MATH  Google Scholar 

  58. Li H, Ladevèze P, Riou H (2018) On wave based weak Trefftz discontinuous Galerkin approach for medium-frequency heterogeneous Helmholtz problem. Comput Method Appl M 328:201–216

    MathSciNet  MATH  Google Scholar 

  59. Li ZC, Lu TT, Huang HT, Cheng AHD (2007) Trefftz, collocation, and other boundary methods-a comparison. Numer Meth Part D E 23(1):93–144

    MathSciNet  MATH  Google Scholar 

  60. Li ZC, Lu TT, Hu HY, Cheng AH (2008) Trefftz and collocation methods. WIT Press, Southampton

    MATH  Google Scholar 

  61. Ling L, Kansa EJ (2004) Preconditioning for radial basis functions with domain decomposition methods. Math Comput Model 40(13):1413–1427

    MathSciNet  MATH  Google Scholar 

  62. López JL, Pérez Sinusía E, Temme NM (2009) Multi-point Taylor approximations in one-dimensional linear boundary value problems. Appl Math Comput 207(2):519–527

    MathSciNet  MATH  Google Scholar 

  63. Marin L, Lesnic D (2002) Boundary element solution for the Cauchy problem in linear elasticity using singular value decomposition. Comput Method Appl M 191(29–30):3257–3270

    MathSciNet  MATH  Google Scholar 

  64. Médale M, Cochelin B (2009) A parallel computer implementation of the asymptotic numerical method to study thermal convection instabilities. J Comput Phys 228(22):8249–8262

    MathSciNet  MATH  Google Scholar 

  65. Moldovan ID (2015) A new particular solution strategy for hyperbolic boundary value problems using hybrid-Trefftz displacement elements. Int J Numer Meth Eng 102(6):1293–1315

    MathSciNet  MATH  Google Scholar 

  66. Nath D, Kalra MS, Munshi P (2015) One-stage method of fundamental and particular solutions (MFS-MPS) for the steady Navier–Stokes equations in a lid-driven cavity. Eng Anal Bound Elem 58:39–47

    MathSciNet  MATH  Google Scholar 

  67. Neidinger RD (2005) Directions for computing truncated multivariate Taylor series. Math Comput 74(249):321–340

    MathSciNet  MATH  Google Scholar 

  68. Ogden RW (1997) Non-linear elastic deformations. Dover Publications Inc, Mineola

    Google Scholar 

  69. Partridge PW, Brebbia CA, Wrobel LC (1992) The dual reciprocity boundary element method. Comput Mech Publications, Southampton Boston

    MATH  Google Scholar 

  70. Pluymers B, Van Hal B, Vandepitte D, Desmet W (2007) Trefftz-based methods for time-harmonic acoustics. Arch Comput Method E 14(4):343–381

    MathSciNet  MATH  Google Scholar 

  71. Poitou A, Bouberbachene M, Hochard C (2000) Resolution of three-dimensional Stokes fluid flows using a Trefftz method. Comput Method Appl M 190(5–7):561–578

    MathSciNet  MATH  Google Scholar 

  72. Qin QH (2000) The Trefftz finite and boundary element method. WIT Press, Southampton

    MATH  Google Scholar 

  73. Qin QH (2005a) Trefftz finite element method and its applications. Appl Mech Rev 58(5):316–337

    Google Scholar 

  74. Qin QH (2005b) Formulation of hybrid Trefftz finite element method for elastoplasticity. Appl Math Model 36(3):235–252

    MATH  Google Scholar 

  75. Qin QH, Wang H (2008) Matlab and C programming for Trefftz finite element methods. CRC Press, Boca Raton

    Google Scholar 

  76. Ramachandran PA (2002) Method of fundamental solutions: singular value decomposition analysis. Commun Numer Meth En 18(11):789–801

    MATH  Google Scholar 

  77. Rentrop P (1978) A Taylor series method for the numerical solution of two-point boundary value problems. Numer Math 31(4):359–375

    MathSciNet  MATH  Google Scholar 

  78. Riks E (1970) On the numerical solution of snapping problems in the theory of elastic stability. Ph.D. diss, Stanford University. SUDAAR No. 401

  79. Riou H (2016) On some results about the variational theory of complex rays used close to the high frequency regime. Math Comput Simul 124:30–43

    MathSciNet  Google Scholar 

  80. Riou H, Ladevèze P, Kovalevsky L (2013) The variational theory of complex rays: an answer to the resolution of mid-frequency 3D engineering problem. J Sound Vib 332(8):1947–1960

    Google Scholar 

  81. Schaback R (1995) Error estimates and condition numbers for radial basis function interpolation. Adv Comput Math 3(3):251–264

    MathSciNet  MATH  Google Scholar 

  82. Silva CM, Castro LM (2007) Hybrid-displacement (Trefftz) formulation for softening materials. Comput Struct 85(17–18):1331–1342

    Google Scholar 

  83. Tampango Y (2012) Développement d’une méthode sans maillage utilisant les approximations de Taylor (development of a meshless method using Taylor approximations). Ph.D. diss, Université de Lorraine

  84. Tampango Y, Potier-Ferry M, Koutsawa Y, Belouettar S (2012) Convergence analysis and detection of singularities within a boundary meshless method based on Taylor series. Eng Anal Bound Elem 36(10):1465–1472

    MathSciNet  MATH  Google Scholar 

  85. Tampango Y, Potier-Ferry M, Koutsawa Y, Tiem S (2013) Coupling of polynomial approximations with application to a boundary meshless method. Int J Numer Meth Eng 95(13):1094–1112

    MathSciNet  MATH  Google Scholar 

  86. Tian H, Potier-Ferry M, Abed-Meraim F (2018) A numerical method based on Taylor series for bifurcation analyses within Föppl-von Karman plate theory. Mech Res Commun 93:154–158. https://doi.org/10.1016/j.mechrescom.2017.12.006

    Article  Google Scholar 

  87. Trefftz E (1928) Ein Gegenstuck zum Ritzschen Verfahren. In: Proceedings of 2nd International Conference on Applied Mechanics. Zurich, pp 131–137

  88. Tri A, Zahrouni H, Potier-Ferry M (2012) High order continuation algorithm and meshless procedures to solve nonlinear Poisson problems. Eng Anal Bound Elem 36(11):1705–1714

    MathSciNet  MATH  Google Scholar 

  89. Tri A, Zahrouni H, Potier-Ferry M (2014) Bifurcation indicator based on meshless and asymptotic numerical methods for nonlinear Poisson problems. Numer Meth Part D E 30(3):978–993

    MathSciNet  MATH  Google Scholar 

  90. Van Dyke M (1974) Analysis and improvement of perturbation series. Quart J Mech Appl Math 27(4):423–450

    MathSciNet  MATH  Google Scholar 

  91. Van Genechten B, Atak O, Bergen B, Deckers E, Jonckheere S, Lee JS, Maressa A, Vergote K, Pluymers B, Vandepitte D, Desmet W (2012) An efficient wave based method for solving Helmholtz problems in three-dimensional bounded domains. Eng Anal Bound Elem 36(1):63–75

    MathSciNet  MATH  Google Scholar 

  92. Wang H, Qin QH (2006) A meshless method for generalized linear or nonlinear Poisson-type problems. Eng Anal Bound Elem 30(6):515–521

    MATH  Google Scholar 

  93. Wang H, Qin QH (2011) Fundamental-solution-based hybrid FEM for plane elasticity with special elements. Comput Mech 48(5):515–528

    MathSciNet  MATH  Google Scholar 

  94. Wang H, Qin QH, Liang XP (2012) Solving the nonlinear Poisson-type problems with F-Trefftz hybrid finite element model. Eng Anal Bound Elem 36(1):39–46

    MathSciNet  MATH  Google Scholar 

  95. Wang ZM, Zhu XA, Tsai CT, Tham CL, Beraun JE (2004) Hybrid-conventional finite element for gradient-dependent plasticity. Finite Elem Anal Des 40(15):2085–2100

    Google Scholar 

  96. Wei T, Hon YC, Ling L (2007) Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators. Eng Anal Bound Elem 31(4):373–385

    MATH  Google Scholar 

  97. Wei YM, Lu TT, Huang HT, Li ZC (2012) Effective condition number for weighted linear least squares problems and applications to the Trefftz method. Eng Anal Bound Elem 36(1):53–62

    MathSciNet  MATH  Google Scholar 

  98. Wong ASM, Hon YC, Li TS, Chung SL, Kansa EJ (1999) Multizone decomposition for simulation of time-dependent problems using the multiquadric scheme. Comput Math Appl 37(8):23–43

    MathSciNet  MATH  Google Scholar 

  99. Yang J, Hu H, Potier-Ferry M (2017) Solving large scale problems by Taylor Meshless Method. Int J Numer Meth Eng 112(2):103–124

    MathSciNet  Google Scholar 

  100. Yang J, Hu H, Potier-Ferry M (2018) Computing singular solutions to partial differential equations by Taylor series. CR Mec 346(7):603–614

    Google Scholar 

  101. Yang J, Hu H, Potier-Ferry M (2019) Least-square collocation and Lagrange multipliers for Taylor meshless method. Numer Meth Part D E 35:84–113. https://doi.org/10.1002/num.22287

    Article  MathSciNet  MATH  Google Scholar 

  102. Yang J, Hu H, Koutsawa Y, Potier-Ferry M (2017) Taylor meshless method for solving non-linear partial differential equations. J Comput Phys 348:385–400

    MathSciNet  MATH  Google Scholar 

  103. Zézé DS (2009) Calcul de fonctions de forme de haut degré par une technique de perturbation(computing high degree shape functions by a perturbation technique),). Ph.D. diss, Université Paul Verlaine Metz

  104. Zézé DS, Potier-Ferry M, Damil N (2010) A boundary meshless method with shape functions computed from the PDE. Eng Anal Bound Elem 34(8):747–754

    MathSciNet  MATH  Google Scholar 

  105. Zézé DS, Potier-Ferry M, Tampango Y (2019) Multi-point Taylor series to solve differential equations. Discret Contin Dyn-S 12:1791–1806

    MathSciNet  MATH  Google Scholar 

  106. Zhou X, Hon YC, Li J (2003) Overlapping domain decomposition method by radial basis functions. Appl Numer Math 44(1–2):241–255

    MathSciNet  MATH  Google Scholar 

  107. Zieliński AP (1988) Trefftz method: elastic and elastoplastic problems. Comput Method Appl M 69(2):185–204

    MathSciNet  MATH  Google Scholar 

  108. Zienkiewicz OC (1997) Trefftz type approximation and the generalized finite element method-history and development. Comput Assist Mech Eng Sci 4:305–316

    MATH  Google Scholar 

Download references

Acknowledgements

Michel Potier-Ferry thanks Pierre Ladevèze and Pierre Villon for helpful discussions about Trefftz and meshless methods.

Funding

This study was funded by National Research Agency ANR (Labex DAMAS, Grant No.ANR-11-LABX-0008-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Potier-Ferry, M., Akpama, K. et al. Trefftz Methods and Taylor Series. Arch Computat Methods Eng 27, 673–690 (2020). https://doi.org/10.1007/s11831-019-09330-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09330-2

Keywords

Navigation