Skip to main content
Log in

Multiphase Flow in Deforming Porous Media: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this work we present a general model for the analysis of multiphase flow in deforming porous media with particular regard to concrete and biological tissues. Such problems are typically multi-physics ones with overlapping domains where diffusion, advection, adsorption, phase change, deformation, chemical reactions and other phenomena take place in the porous medium. For the analysis of such a complex system, the model here proposed is obtained from microscopic scale by applying the thermodynamically constrained averaging theory which guarantees the satisfaction of the second law of thermodynamics for all constituents both at micro and macro-level. Furthermore, one can obtain some important thermodynamic restrictions for the evolution equations describing the material deterioration. Two specific forms of the general model adapted to the cases of cementitious and biological materials respectively are shown. Some numerical simulations aimed at proving the validity of the approach adopted, are also presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Baroghel-Bouny V et al (1999) Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. Cem Concr Res 29:1225–1238

    Article  Google Scholar 

  2. Benboudjema F, Torrenti JM (2008) Early-age behaviour of concrete nuclear containments. Nucl Eng Des 238(10):2495–2506

    Article  Google Scholar 

  3. Bianco M, Bilardi G, Pesavento F, Pucci G, Schrefler BA (2003) A frontal solver tuned for fully-coupled non-linear hygro-thermo-mechanical problems. Int J Numer Methods Eng 57(13):1801–1818

    Article  MATH  Google Scholar 

  4. Biot MA (1941) General theory of three dimensional consolidation. J Appl Phys 12(2):155–164

    Article  MATH  Google Scholar 

  5. Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26(2):182–185

    Article  MathSciNet  MATH  Google Scholar 

  6. Biot MA (1956) General solutions of the equations of elasticity and consolidation for a porous material. J Appl Mech ASME 78:91–96

    MathSciNet  MATH  Google Scholar 

  7. Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech ASME 24:594–601

    MathSciNet  Google Scholar 

  8. Brooks RH, Corey AT (1966) Properties of porous media affecting fluid flow. J Irrig Drain Div Am Soc Civ Eng 92(IR2):61–88

    Google Scholar 

  9. Buffo-Lacarrière L, Baron S, Barré F, Chauvel D, Darquennes A, Dubois JP, Gayete J, Grondin F, Kolani B, Lançon H, Loukili A, Moreau G, Rospars C, Sellier A, Torrenti JM (2015) Restrained shrinkage of massive reinforced concrete structures: results of the project CEOS.fr. Eur J Environ Civ Eng. doi:10.1080/19648189.2015.1072587

    Google Scholar 

  10. Cervera M, Chiumenti M (2006) Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique. Comput Methods Appl Mech Eng 196:304–320

    Article  MATH  Google Scholar 

  11. Cervera M, Olivier J, Prato T (1999) A thermo-chemo-mechanical model for concrete. II: damage and creep. J Eng Mech (ASCE) 125(9):1028–1039

    Article  Google Scholar 

  12. Cheng AHD (2015) Poroelasticity. Springer, Berlin

    Google Scholar 

  13. Chung LS, Man Y-g, Lupton GP (2010) WT-1 expression in a spectrum of melanocytic lesions: implication for differential diagnosis. J Cancer 1:120

    Article  Google Scholar 

  14. ConCrack (2011) International benchmark for control of cracking in R.C. Structures. www.concrack.org

  15. De Sa C, Benboudjema F, Thiery M, Sicard J (2008) Analysis of microcracking induced by differential drying shrinkage. Cem Concr Compos 30:947–956

    Article  Google Scholar 

  16. De Sa C, Benboudjema F (2012) Modeling of concrete nonlinear mechanical behavior at high temperatures with different damage-based approaches. Mater Struct 44:1411–1429

    Google Scholar 

  17. De Schutter G (2002) Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws. Comput Struct 80:2035–2042

    Article  Google Scholar 

  18. De Schutter G, Taerwe L (1996) Degree of hydration based description of mechanical properties of early-age concrete. Mater Struct 29(6):335–344

    Article  Google Scholar 

  19. De Schutter G, Taerwe L (1997) Fracture energy of concrete at early ages. Mater Struct 30:67–71

    Article  Google Scholar 

  20. Gawin D, Baggio P, Schrefler BA (1995) Coupled heat, water and gas flow in deformable porous media. Int J Numer Methods Fluids 20:969–987

    Article  MATH  Google Scholar 

  21. Gawin D, Pesavento F, Schrefler BA (2002) Modelling of hygro-thermal behaviour and damage of concrete at temperature above the critical point of water. Int J Numer Anal Meth Geomech 26(6):537–562

    Article  MATH  Google Scholar 

  22. Gawin D, Pesavento F, Schrefler BA (2003) Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation. Comput Methods Appl Mech Eng (CMAME) 192(13–14):1731–1771

    Article  MATH  Google Scholar 

  23. Gawin D, Pesavento F, Schrefler BA (2004) ‘Modelling of deformations of high strength concrete at elevated temperatures. Mater Struct 37(268):218–236

    Article  Google Scholar 

  24. Gawin D, Pesavento F, Schrefler BA (2006) Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: hydration and hygro-thermal phenomena. Int J Numer Meth Eng 67(3):299–331

    Article  MATH  Google Scholar 

  25. Gawin D, Pesavento F, Schrefler BA (2006) Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part II: shrinkage and creep of concrete. Int J Numer Meth Eng 67(3):332–363

    Article  MATH  Google Scholar 

  26. Gawin D, Pesavento F, Schrefler BA (2008) Modeling of cementitious materials exposed to isothermal calcium leaching, with considering process kinetics and advective water flow. Part 1: theoretical model. Solids Struct 45:6221–6240. doi:10.1016/j.ijsolstr.2008.07.010

    Article  MATH  Google Scholar 

  27. Gawin D, Pesavento F, Schrefler BA (2009) Modeling deterioration of cementitious materials exposed to calcium leaching in non-isothermal conditions. Comput Methods Appl Mech Eng 198:3051–3083. doi:10.1016/j.cma.2009.05.005

    Article  MATH  Google Scholar 

  28. Gawin D, Koniorczyk M, Pesavento F (2013) Modelling of hydro-thermo-chemo-mechanical phenomena in building materials. Bull Polish Acad Sci Tech Sci 61(1):51–63

    Google Scholar 

  29. Gray WG, Miller CT (2005) ‘Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. Motivation and overview. Adv Water Resour 28:161–180

    Article  Google Scholar 

  30. Gray WG, Schrefler BA (2001) Thermodynamic approach to effective stress in partially saturated porous media. Eur J Mech A/Solids 20:521–538

    Article  MATH  Google Scholar 

  31. Gray WG, Schrefler BA, Pesavento F (2009) The solid phase stress tensor in porous media mechanics and the Hill-Mandel condition. J Mech Phys Solids 57:539–554

    Article  MathSciNet  MATH  Google Scholar 

  32. Gray WG, Miller CT (2009) ‘Thermodynamically constrained averaging theory approach for modelling flow and transport phenomena in porous medium systems: 5. Single-fluid-phase transport. Adv Water Resour 32:681–711

    Article  Google Scholar 

  33. Hassanizadeh SM, Gray WG (1979) ‘General conservation equations for multi-phase systems: 1. Averaging procedure. Adv Water Resour 2:131–144

    Article  Google Scholar 

  34. Hassanizadeh SM, Gray WG (1979) ‘General conservation equations for multi-phase systems: 2. Mass, momenta, energy and entropy equations. Adv Water Resour 2:191–203

    Article  Google Scholar 

  35. Hassanizadeh SM, Gray WG (1980) ‘General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow. Adv Water Resour 3:25–40

    Article  Google Scholar 

  36. Huyghe J, Janssen J (1977) Quadriphasic mechanics of swelling incompressible porous media. Int J Eng Sci 35:793–802

    Article  MATH  Google Scholar 

  37. Huyghe JM, van Campen DH (1995) Finite deformation theory of hierarchically arranged porous solids: I. Balance of mass and momentum. Int J Eng Sci 33(13):1861–1871

    Article  MATH  Google Scholar 

  38. Huyghe JM, van Campen DH (1995) Finite deformation theory of hierarchically arranged porous solids: II. Constitutive behaviour. Int J Eng Sci 33(13):1873–1886

    Article  MATH  Google Scholar 

  39. Huyghe JM, van Loon RJ, Baaijens FPT, van Kemenade PM, Smit TH (2002) We all are porous media. In: Auriault JL, Geidreau C, Royer P, Bloch JF, Boutin C, Lewandowska J (eds) Poromechanics II. Swets and Zeitlinger, Lisse, pp 17–28

    Google Scholar 

  40. Jackson AS, Miller CT, Gray WG (2009) ‘Thermodynamically constrained averaging theory approach for modelling flow and transport phenomena in porous medium systems: 6. Two-fluid-phase flow. Adv Water Resour 32:779–795

    Article  Google Scholar 

  41. Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1:241–263

    Article  Google Scholar 

  42. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 7(11):653–664

    Article  Google Scholar 

  43. Lenhard RJ, Parker JC (1987) Measurement and prediction of saturation–pressure relationship in three-phase porous media systems. J Contam Hydrol 1:407–424

    Article  Google Scholar 

  44. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley, Chichester

    MATH  Google Scholar 

  45. Lewis RW, Schrefler BA (1987) The finite element method in the deformation and consolidation of porous media. Wiley, Chichester

    MATH  Google Scholar 

  46. Lewis RW, Sukirman Y (1993) Finite element modelling of three-phase flow in deforming saturated oil reservoir. Int J Anal Methods Geomech 17:577–598

    Article  MATH  Google Scholar 

  47. Mazars J (1986) A description of micro and macroscale damage of concrete structures. Eng Fract Mech 25(5–6):729–737

    Article  Google Scholar 

  48. Mazzotti C, Savoia M (2003) Nonlinear creep damage model for concrete under uniaxial compression. J Eng Mech 129(9):1065–1075

    Article  Google Scholar 

  49. Meroi E, Schrefler BA, Zienkiewicz O (1995) Large strain static and dynamic semisaturated soil behaviour. Int J Numer Anal Meth Geomech 19(2):81–106

    Article  MATH  Google Scholar 

  50. Pao WKS, Lewis RW (2002) Numerical simulation of three-phase flow in deforming three- dimensional fractured reservoirs. Comput Methods Mech Eng 191(23–24):2631–2659

    Article  MATH  Google Scholar 

  51. Perzyna P (1966) Fundamental problems in viscoplasticity. Adv Appl Mech 9(2):244–368

    Google Scholar 

  52. Pesavento F, Gawin D, Schrefler BA (2008) Modeling cementitious materials as multiphase porous media: theoretical framework and applications. Acta Mech 201:313–339. doi:10.1007/s00707-008-0065-z

    Article  MATH  Google Scholar 

  53. Pesavento F, Gawin D, Wyrzykowski M, Schrefler BA, Simoni L (2012) Modeling alkali-silica reaction in non-isothermal, partially saturated cement based materials. Comput Methods Appl Mech Eng (CMAME) 225–228:95–115. doi:10.1016/j.cma.2012.02.019

    Article  MathSciNet  MATH  Google Scholar 

  54. Poyet S (2003) Etude de la dégradation des ouvrages en béton atteints de la réaction alcali-silice: approche expérimentale et modélisation numérique multi-échelle des dégradations dans un environnement hydro-chemo-mécanique variable. PhD Thesis, University of Marne la Vallée, France

  55. Rots JG (1988) Computational modeling of concrete fracture. PhD Thesis. Delft University of Technology

  56. Santagiuliana R, Stigliano C, Mascheroni P, Ferrari M, Decuzzi P, Schrefler BA (2015) The role of cell lysis and matrix deposition in tumor growth modeling. Adv Model Simul Eng Sci. doi:10.1186/s40323-015-0040-x455

    Google Scholar 

  57. Schrefler BA (2002) Mechanics and thermodynamics of saturated-unsaturated porous materials and quantitative solutions. Appl Mech Rev 55(4):351–388

    Article  Google Scholar 

  58. Schrefler BA, Brunello P, Gawin D, Majorana CE, Pesavento F (2002) Concrete at high temperature with application to tunnel fire. Comput Mech 29:43–51

    Article  MATH  Google Scholar 

  59. Sciumè G (2013) THCM model of concrete at early ages and its extension to tumor growth numerical analysis. PhD Thesis, University of Padua, Italy and Ecole Normale Supérieure de Cachan, France

  60. Sciumè G, Schrefler BA, Pesavento F (2012) Thermo-hygro-chemo-mechanical modelling of the behaviour of a massive beam with restrained shrinkage. In: CONCRACK 3, International workshop on crack control of mass concrete and related issues concerning early-age concrete structures, RILEM, JCI, Paris, France

  61. Sciumè G, Benboudjema F, De Sa C, Pesavento F, Berthaud Y, Schrefler BA (2013) A multiphysics model for concrete at early age applied to repairs problems. Eng Struct 57:374–387

    Article  Google Scholar 

  62. Sciumè G, Shelton S, Gray WG, Miller CT, Hussain F, Ferrari M, Decuzzi P, Schrefler BA (2013) A multiphase model for three-dimensional tumor growth. New J Phys 15(015005)

  63. Sciumè G, Boso DP, Gray WG, Cobelli C, Schrefler BA (2014) A two-phase model of plantar tissue: a step toward prediction of diabetic foot ulceration. Int J Numer Methods Biomed Eng 30(11):1153–1169

    Article  MathSciNet  Google Scholar 

  64. Sciumè G, Gray WG, Hussain F, Ferrari M, Decuzzi P, Schrefler BA (2014) Three phase flow dynamics in tumor growth. Comput Mech 53(3):465–484

    Article  MathSciNet  MATH  Google Scholar 

  65. Sciumè G, Santagiuliana R, Ferrari M, Decuzzi P, Schrefler BA (2014) A tumor growth model with deformable ECM. Phys Biol 11(6):065004

    Article  Google Scholar 

  66. Sciumè G, Ferrari M, Schrefler BA (2014) Saturation–pressure relationships for two- and three-phase flow analogies for soft matter. Mech Res Commun 62:132–137

    Article  Google Scholar 

  67. Shelton S (2011) Mechanistic modelling of cancer tumor growth using a porous media approach. PhD Thesis, University of North Carolina at Chapel Hill, Chapel Hill, USA

  68. Simoni L, Schrefler BA (2014) Multi field simulation of fracture Chapter 4. In: Bordas SPA (ed) Advances in Applied Mechanics, AAMS, Academic Press, vol. 47, pp. 367-519

  69. Terzaghi K (1923) Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen (A method of calculating the permeability of clay from the history of hydrodynamic stress variation), Sitzungsber. d. Akad. d. Wiss., Wien Math.Naturwiss. Kl., Abt. IIa, 132(3/4), 125138

  70. Terzaghi K (1925) Erdbaumechanik auf Bodenphysikalischer Grundlage (Soil Mechanics on Soil Physical Basis), pp 390, F. Deuticke

  71. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York, p 528

    Book  Google Scholar 

  72. Terzaghi K, Peck RB (1948) Soil mechanics in engineering practice. Wiley, New York, p 566

    Google Scholar 

  73. Thomas HR, He Y (1995) Analysis of coupled heat, moisture and air flow in a deformable unsaturated soil. Geotechnique 45(4):677–689

    Article  Google Scholar 

  74. Ulm F-J, Coussy O (1995) Modeling of thermo-chemo-mechanical couplings of concrete at early ages. J Eng Mech (ASCE) 121(7):785–794

    Article  Google Scholar 

  75. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  76. Zhan XY, Schrefler BA, Simoni L (1995) Finite element simulation of multiphase flow, heat flow and solute transport in deformable porous media. In: Morandi Cecchi M, Morgan K, Periaux J, Schrefler BA, Zienkiewicz OC, (eds) Proceedings of international conference on finite elements in fluids. Dip. Matematica Pura e Applicata, University of Padua, part II, pp. 1283–1290

  77. Zienkiewicz OC (1982) Field equations for porous media under dynamic loads in Num. Meth. in Geomech. D. Reidel, Boston

  78. Zienkiewicz OC, Taylor RL (2000) The finite element method, vol. 1: The Basis. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  79. Zienkiewicz OC, Chan A, Pastor M, Schrefler BA, Shiomi T (1999) Computational geomechanics with special reference to earthquake engineering. Wiley, Chichester

    MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the University of Padua for financial support (PRAT 2013 – project n. CPDA135049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pesavento.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pesavento, F., Schrefler, B.A. & Sciumè, G. Multiphase Flow in Deforming Porous Media: A Review. Arch Computat Methods Eng 24, 423–448 (2017). https://doi.org/10.1007/s11831-016-9171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9171-6

Keywords

Navigation