Skip to main content
Log in

Multiscale Modeling of Concrete

From Mesoscale to Macroscale

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this paper, a mesoscale model of concrete is presented, which considers particles, matrix material and the interfacial transition zone (ITZ) as separate constituents. Particles are represented as ellipsoides, generated according to a prescribed grading curve and placed randomly into the specimen. Algorithms are proposed to generate realistic particle configurations efficiently. The nonlinear behavior is simulated with a cohesive interface model for the ITZ. For the matrix material, different damage/plasticity models are investigated. The simulation of localization requires to regularize the solution, which is performed by using integral type nonlocal models with strain or displacement averaging. Due to the complexity of a mesoscale model for a realistic structure, a multiscale method to couple the homogeneous macroscale with the heterogeneous mesoscale model in a concurrent embedded approach is proposed. This allows an adaptive transition from a full macroscale model to a multiscale model, where only the relevant parts are resolved on a finer scale. Special emphasis is placed on the investigation of different coupling schemes between the different scales, such as the mortar method and the arlequin method, and a discussion of their advantages and disadvantages within the current context. The applicability of the proposed methodology is illustrated for a variety of examples in tension and compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scrivener KL (2004) Cem Concr Compos 26:935

    Article  Google Scholar 

  2. Tasong WA, Lynsdale CJ, Cripps JC (1998) Cem Concr Res 28(10):1453

    Article  Google Scholar 

  3. Lee KM, Buyukozturk O, Oumera A (1992) J Eng Mech 118(10):2031

    Article  Google Scholar 

  4. Caliskan S, Karihaloo B, Barr B (2002) Mag Concr Res 54(6):449

    Article  Google Scholar 

  5. Walz K (1976) Beton 3:95

    Google Scholar 

  6. Walz K (1976) Beton 4:135

    Google Scholar 

  7. Liao KY, Chang PK, Yaw-Nan P, Yang CC (2004) Cem Concr Res 34:977

    Article  Google Scholar 

  8. Diamond S, Huang J (2001) Cem Concr Compos 23:179

    Article  Google Scholar 

  9. Tasong WA, Lynsdale JC, Cripps JC (1999) Cem Concr Res 29:1019

    Article  Google Scholar 

  10. Appa Rao G, Raghu Prasad B (2002) Cem Concr Res 32:253

    Article  Google Scholar 

  11. Caliskan S, Karihaloo B, Barr B (2002) Mag Concr Res 54(6):463

    Article  Google Scholar 

  12. Aquino MJ, Li Z, Shah SP (1995) Adv Cem Based Mater 2:211

    Article  Google Scholar 

  13. Guinea G, El-Sayed K, Rocco C, Elices M, Planas J (2002) Cem Concr Res 32:1961

    Article  Google Scholar 

  14. Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) J Bone Miner Res 4(1):3

    Article  Google Scholar 

  15. Takano N, Kimura K, Zako M, Kubo F (2003) JSME Int J, Ser A, Solid Mech Mater Eng 46(4):527

    Google Scholar 

  16. Nagai G, Yamada T, Wada A (2000) In: Proceedings of the 8th ICCCBE, Stanford University, California, USA, pp 449–456

    Google Scholar 

  17. Hollister SJ, Kikuchi N (1994) Biotechnol Bioeng 43(7):586

    Article  Google Scholar 

  18. Nagano Y, Ikeda Y, Kawamoto H (2004) In: Miyasaka C, Yokono Y, Bray D, Cho Y-H (eds) ASME/JSME pressure vessels and piping conference, San Diego, vol 484, pp 141–146

    Google Scholar 

  19. Zaitsev YB, Wittmann FH (1981) Mater Struct 14(5):357

    Google Scholar 

  20. Bažant ZP, Tabbara MR, Kazemi MT, Pijaudier-Cabot G (1990) J Eng Mech 116(8):1686

    Article  Google Scholar 

  21. Schlangen E, van Mier JGM (1992) Mater Struct 25(9):534

    Article  Google Scholar 

  22. Häfner S, Eckardt S, Könke C (2003) In: Proceedings of the 16th international conference on the application of computer science and mathematics in architecture and civil engineering, Weimar

    Google Scholar 

  23. Leite J, Slowik V, Mihashi H (2004) Cem Concr Res 34(6):1025

    Article  Google Scholar 

  24. Leite JPB, Slowik V, Apel J (2007) Comput Struct 85(17–18):1293

    Article  Google Scholar 

  25. Garboci E (2002) Cem Concr Res 32:1621

    Article  Google Scholar 

  26. Häfner S, Eckardt S, Luther T, Könke C (2006) Comput Struct 84(7):450

    Article  Google Scholar 

  27. Walraven JC (1980) PhD thesis, Delft University of Technology

  28. Wriggers P, Moftah SO (2006) Finite Elem Anal Des 42(7):623 (Special issue)

    Article  Google Scholar 

  29. Wang Z, Kwan A, Chan H (1999) Comput Struct 70(5):533

    Article  MATH  Google Scholar 

  30. Eckardt S, Könke C (2006) In: Gürlebeck K, Könke C (eds) Proceedings of the 17th international conference on the application of computer science and mathematics in architecture and civil engineering, Weimar

    Google Scholar 

  31. Devroye L (1986) Non-uniform random variate generation. Springer, New York

    MATH  Google Scholar 

  32. Wittmann FH, Roelfstra PE, Sadouki H (1985) Mater Sci Eng 68(2):239

    Article  Google Scholar 

  33. Wang W, Wang J, Kim MS (2001) Comput Aided Geom Des 18(6):531

    Article  MathSciNet  MATH  Google Scholar 

  34. Barbeau EJ (2003) Polynomials. Springer, Berlin

    MATH  Google Scholar 

  35. Shewchuk JR (1996) In: Lin MC, Manocha D (eds) Applied computational geometry: towards geometric engineering. Lecture notes in computer science, vol 1148. Springer, Berlin, pp 203–222

    Chapter  Google Scholar 

  36. Geuzaine C, Remacle JF (2008) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities (2008). http://geuz.org/gmsh/

  37. Belytschko T, Black T (1999) Int J Numer Methods Eng 45(5):6001

    Article  MathSciNet  Google Scholar 

  38. Wells G, Sluys L (2001) Int J Numer Methods Eng 50:2667

    Article  MATH  Google Scholar 

  39. Moës N, Belytschko T (2002) Eng Fract Mech 69:813

    Article  Google Scholar 

  40. Sluys LJ (1992) PhD thesis, Delft University of Technology

  41. Hofstetter G, Mang HA (1995) Computational mechanics of reinforced concrete structures. Vieweg, Weisbaden

    MATH  Google Scholar 

  42. Bažant ZP, Pijaudier-Cabot G (1989) J Eng Mech 115(4):755

    Article  Google Scholar 

  43. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  44. Kachanov L (1986) Introduction to continuum damage mechanics. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  45. Lemaitre J (1984) Nucl Eng Des 80(2):233

    Article  MathSciNet  Google Scholar 

  46. Rashid Y (1968) Nucl Eng Des 7:334

    Article  Google Scholar 

  47. Bažant ZP, Gambarova P (1980) J Struct Div 106(4):819

    Google Scholar 

  48. Bažant ZP, Oh BH (1983) Mat Construct 16(93):155

    Article  Google Scholar 

  49. Willam K, Pramono E, Sture S (1987) In: Shah S, Swartz S (eds) Proceedings of SEM/RILEM international conference on fracture of concrete and rock, pp 192–207

    Google Scholar 

  50. de Borst R, Nauta P (1985) Eng Comput 2(1):35

    Article  Google Scholar 

  51. Cope RJ, Rao PV, Clark LA, Norris P (1980) In: Taylor C, Hinton E, Owen DRJ (eds) Numerical methods for nonlinear problems 1. Pineridge Press, Swansea, pp 457–470

    Google Scholar 

  52. Bažant ZP (1983) J Eng Mech 109(3):849

    Article  Google Scholar 

  53. Gupta AK, Akbar H (1984) J Struct Eng 110(8):1735

    Article  Google Scholar 

  54. Rots J (1988) PhD thesis, Delft University of Technology (1988)

  55. Bažant ZP, Oh BH (1985) J Eng Mech 111(4):559

    Article  Google Scholar 

  56. Bažant ZP, Prat PC (1988) J Eng Mech 114(10):1672

    Article  Google Scholar 

  57. Carol I, Bažant ZP (1997) Int J Solids Struct 34(29):3807

    Article  MATH  Google Scholar 

  58. Kuhl E, Ramm E (1998) Mech Cohes-Frict Mater 3:343

    Article  Google Scholar 

  59. Bažant ZP, Caner FC, Carol I, Adley MD, Akers SA (2000) J Eng Mech 126(9):944

    Article  Google Scholar 

  60. Patzak B, Jirásek M (2004) J Eng Mech 130:720

    Article  Google Scholar 

  61. Taylor GI (1938) J Inst Metals Lond 62:307

    Google Scholar 

  62. Jirásek M, Bažant ZP (2001) Inelastic analysis of structures. Wiley, New York

    Google Scholar 

  63. Bažant ZP (1976) ASCE J Eng Mech Div 102(2):331

    Google Scholar 

  64. Pietruszczak S, Mróz Z (1981) Int J Numer Methods Eng 17(3):327

    Article  MATH  Google Scholar 

  65. de Vree JHP, Brekelmans WAM, van Gils MAJ (1995) Comput Struct 55(4):581

    Article  MATH  Google Scholar 

  66. Jirásek M, Grassl P (2008) Eng Fract Mech 75(8):1921

    Article  Google Scholar 

  67. Mančevski D (1981) PhD thesis, Ruhr University Bochum

  68. Oliver J (1989) Int J Numer Methods Eng 28(2):461

    Article  MATH  Google Scholar 

  69. Jirásek M, Zimmermann T (1998) J Eng Mech 124:842

    Article  Google Scholar 

  70. Eringen AC (1966) Int J Eng Sci 4(2):179

    Article  MathSciNet  MATH  Google Scholar 

  71. Kröner E (1967) Int J Solids Struct 3(5):731

    Article  MATH  Google Scholar 

  72. Pijaudier-Cabot G, Bažant ZP (1987) J Eng Mech 113(10):1512

    Article  Google Scholar 

  73. Bažant ZP, Pijaudier-Cabot G (1988) Journal of Applied Mechanics. Trans ASME 55(2):287. Cited By (since 1996): 192

    Article  MATH  Google Scholar 

  74. Bažant ZP, Lin FB (1988) J Struct Eng 114(11):2493

    Article  Google Scholar 

  75. Jirásek M (1998) Int J Solids Struct 35(31–32):4133

    Article  MATH  Google Scholar 

  76. Bažant ZP (1991) J Eng Mech 117(5):1070

    Article  Google Scholar 

  77. Bažant ZP (1994) J Eng Mech 120(3):593

    Article  Google Scholar 

  78. Bažant ZP, Jirásek M (2002) J Eng Mech 128(11):1119

    Article  Google Scholar 

  79. Jirásek M, Bažant ZP (1994) J Struct Eng ASCE 120(7):1521

    Google Scholar 

  80. Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Int J Numer Methods Eng 39:3391

    Article  MATH  Google Scholar 

  81. Peerlings RHJ (1999) PhD thesis, Technische Universiteit Eindhoven

  82. Mazars J, Pijaudier-Cabot G (1996) Int J Solids Struct 33(20–22):3327

    Article  MATH  Google Scholar 

  83. Krayani A, Pijaudier-Cabot G, Dufour F (2009) Eng Fract Mech 76(14):2217

    Article  Google Scholar 

  84. Borino G, Failla B, Parrinello F (2003) Int J Solids Struct 40(13–14):3621

    Article  MATH  Google Scholar 

  85. Askes H, Sluys LJ (2000) Eur J Mech A, Solids 19(3):447

    Article  MATH  Google Scholar 

  86. Bažant ZP, Ozbolt J (1990) J Eng Mech 116(11):2485

    Article  Google Scholar 

  87. Jirásek M (1998) Comparison of nonlocal models for damage and fracture. LSC Internal report 98/02, Swiss Federal Institute of Technology (EPFL), Laboratory of Structural and Continuum Mechanics

  88. Jirásek M, Marfia S (2005) Int J Numer Methods Eng 63(1):77

    Article  MATH  Google Scholar 

  89. Carol I, Rizzi E, Willam K (2001) Int J Solids Struct 38(4):519

    Article  Google Scholar 

  90. Hansen E, Willam K, Carol I (2001) In: de Borst R, Mazars J, Pijaudier-Cabot G, van Mier J (eds) Fracture mechanics of concrete structures, pp 549–556

    Google Scholar 

  91. Grassl P, Jirásek M (2006) Int J Numer Anal Methods Geomech 30(1):71

    Article  MATH  Google Scholar 

  92. Ju J (1989) Int J Solids Struct 25(7):803

    Article  MATH  Google Scholar 

  93. Jason L, Huerta A, Pijaudier-Cabot G, Ghavamian S (2006) Comput Methods Appl Mech Eng 195(52):7077

    Article  MATH  Google Scholar 

  94. Lubliner J, Oliver J, Oller S, Oñate E (1989) Int J Solids Struct 25(3):299

    Article  Google Scholar 

  95. Ananiev S, Ožbolt J (2004) In: Li V, Leung C, Willam K, Billington S (eds) Fracture mechanics of concrete structures, pp 271–278

    Google Scholar 

  96. Unger JF, Eckardt S, Könke C (2011) Comput. Concr. 8(4):401

    Google Scholar 

  97. Simo J, Hughes T (1997) Computational inelasticity. Springer, Berlin

    Google Scholar 

  98. Grassl P, Jirásek M (2010) Int J Solids Struct 47(7–8):957

    Article  MATH  Google Scholar 

  99. Hillerborg A, Modéer M, Petersson P (1976) Cem Concr Res 6:773

    Article  Google Scholar 

  100. Dugdale D (1960) J Mech Phys Solids 8:100

    Article  Google Scholar 

  101. Barenblatt G (1962) Adv Appl Mech 7:55

    Article  MathSciNet  Google Scholar 

  102. Tvergaard V (2003) Eng Fract Mech 70:1859

    Article  Google Scholar 

  103. Ortiz M, Pandolfi A (1999) Int J Numer Methods Eng 44(9):1267

    Article  MATH  Google Scholar 

  104. Kessler-Kramer C (2002) PhD thesis, Universität Karlsruhe (TH), Germany

  105. Reuss A (1929) Z Angew Math Mech 9(1):49

    Article  MATH  Google Scholar 

  106. van Vliet MRA, van Mier JGM (1995) In: Wittman F (ed) Fracture mechanics of concrete structures (FraMCoS-2, Zürich), pp 383–396

    Google Scholar 

  107. Unger JF (2009) PhD thesis, Bauhaus University Weimar

  108. Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials, 2nd edn. Amsterdam, Elsevier

    Google Scholar 

  109. Hill R (1963) J Mech Phys Solids 11(5):357

    Article  MATH  Google Scholar 

  110. Hashin Z (1983) Journal of Applied Mechanics. Trans ASME 50(3):481

    Article  MATH  Google Scholar 

  111. Gitman I (2006) PhD thesis, Delft University of Technology

  112. Gitman IM, Askes H, Sluys LJ (2007) Eng Fract Mech 74(16):2518

    Article  Google Scholar 

  113. Belytschko T, Song JH (2010) Int J Numer Methods Eng 81(5):537

    MathSciNet  MATH  Google Scholar 

  114. Kröner E (1958) Z Phys 151:504

    Article  Google Scholar 

  115. Voigt W (1889) Ann Phys 274(12):573

    Article  Google Scholar 

  116. Hill R (1952) Proc Phys Soc A 65(5):349

    Article  Google Scholar 

  117. Hashin Z, Shtrikman S (1963) J Mech Phys Solids 11(2):127

    Article  MathSciNet  MATH  Google Scholar 

  118. Mura T (1982) Micromechanics of defects in solids. Nijhoff, Dordrecht

    Google Scholar 

  119. Aboudi J (1991) Mechanics of composite materials—a unified micromechanical approach. Amsterdam, Elsevier

    MATH  Google Scholar 

  120. Zohdi T, Feucht M, Gross D, Wriggers P (1998) Int J Numer Methods Eng 43(3):493

    Article  MATH  Google Scholar 

  121. Suquet RM (1987) In: Sanchez-Palencia E, Zaoui A (eds) Homogenization techniques for composite media: lectures delivered at the CISM international center for mechanical sciences, Udine, Italy, July 1–5, 1985. Lecture notes in physics, vol 272. Springer, Berlin, pp 193–278

    Google Scholar 

  122. Döbert C (2001) Dissertation, Universität Hannover

  123. Reese S (2003) Int J Solids Struct 40(4):951

    Article  MATH  Google Scholar 

  124. Ghaboussi J, Garret JH, Wu X (1990) In: Proceedings of the international conference on numerical methods in engineering: theory and applications, Swansea, UK, pp 701–717

    Google Scholar 

  125. Ghaboussi J, Garret J, Wu X (1991) J Eng Mech Div ASCE 117(1):132

    Article  Google Scholar 

  126. Waszczyszyn Z, Ziemianski L (2001) Comput Struct 79(22–25):2261

    Article  Google Scholar 

  127. Furukawa T, Yagawa G (1998) Int J Numer Methods Eng 43(2):195

    Article  MATH  Google Scholar 

  128. Lefik M, Schrefler BA (2001) Comput Struct 80(22):1699

    Article  Google Scholar 

  129. Sidarta DE, Ghaboussi J (1998) Comput Geotech 22(1):53

    Article  Google Scholar 

  130. Fu Q, Hashash YMA, Jung S, Ghaboussi J (2007) Comput Geotech 34(5):330

    Article  Google Scholar 

  131. Ghaboussi J, Pecknold D, Zhang M, Haj-Ali R (1998) Struct Eng Mech 42(1):105

    MATH  Google Scholar 

  132. Haj-Ali R, Pecknold DA, Ghaboussi J, Voyiadjis GZ (2001) J Eng Mech 127(7):730

    Article  Google Scholar 

  133. Hashash Y, Jung S, Ghaboussi J (2004) Int J Numer Methods Eng 59:989

    Article  MATH  Google Scholar 

  134. Unger JF, Könke C (2008) Comput Struct 86(21–22):1994

    Article  Google Scholar 

  135. Smit RJM, Brekelmans WAM, Meijer HEH (1998) Comput Methods Appl Mech Eng 155(1–2):181

    Article  MATH  Google Scholar 

  136. Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) Comput Mech 27(1):37

    Article  MATH  Google Scholar 

  137. Miehe C, Koch A (2002) Arch Appl Mech 72(4–5):300

    Article  MATH  Google Scholar 

  138. Bayreuther C (2004) Dissertation, Universität Stuttgart

  139. Wilson EL (1974) Int J Numer Methods Eng 8(1):198

    Article  Google Scholar 

  140. Feyel F, Chaboche JL (2000) Comput Methods Appl Mech Eng 183(3–4):309

    Article  MATH  Google Scholar 

  141. Feyel F (2003) Comput Methods Appl Mech Eng 192(28–30):3233

    Article  MATH  Google Scholar 

  142. Ghosh S, Lee K, Raghavan P (2001) Int J Solids Struct 38(14):2335

    Article  MATH  Google Scholar 

  143. Kouznetsova V (2002) PhD thesis, Technische Universiteit Eindhoven

  144. Kouznetsova VG, Geers MGD, Brekelmans WAM (2002) Int J Numer Methods Eng 54(8):1235

    Article  MATH  Google Scholar 

  145. Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Comput Methods Appl Mech Eng 193(48–51):5525

    Article  MATH  Google Scholar 

  146. Gitman IM, Askes H, Sluys LJ (2008) Eur J Mech A, Solids 27(3):302

    MATH  Google Scholar 

  147. Belytschko T, Loehnert S, Song JH (2008) Int J Numer Methods Eng 73(6):869

    Article  MathSciNet  MATH  Google Scholar 

  148. Song JH, Belytschko T (2009) Compos, Part B, Eng 40(6):417

    Article  Google Scholar 

  149. Noor AK, Kamel HA, Fulton RE (1978) Comput Struct 8(5):621

    Article  MATH  Google Scholar 

  150. Hirai I, Wang BP, Pilkey WD (1984) Int J Numer Methods Eng 20(9):1671

    Article  MATH  Google Scholar 

  151. Mao KM, Sun CT (1991) Int J Numer Methods Eng 32(1):29

    Article  MATH  Google Scholar 

  152. Whitcomb JD (1991) Comput Struct 40(4):1027

    Article  Google Scholar 

  153. Mote CD (1971) Int J Numer Methods Eng 3(4):565

    Article  MathSciNet  MATH  Google Scholar 

  154. Noor AK, Peters JM (1980) Int J Numer Methods Eng 15(9):1363

    Article  MathSciNet  MATH  Google Scholar 

  155. Belytschko T, Fish J, Bayliss A (1990) Comput Methods Appl Mech Eng 81(1):71

    Article  MATH  Google Scholar 

  156. Hughes TJ (1995) Comput Methods Appl Mech Eng 127(1–4)

  157. Hughes TJR, Feijó GR, Mazzei L, Quincy J (1998) Comput Methods Appl Mech Eng 166(1–2):3

    Article  MATH  Google Scholar 

  158. Fish J (1992) Comput Struct 43(3):539

    Article  MATH  Google Scholar 

  159. Rank E, Krause R (1997) Comput Struct 64(1–4):139

    Article  MATH  Google Scholar 

  160. Krause R, Rank E (2003) Comput Methods Appl Mech Eng 192(35–36):3959

    Article  MATH  Google Scholar 

  161. Bernardi C, Maday Y, Patera AT (1994) In: Brezis H, Lions JL (eds) Nonlinear partial differential equations and their applications. Collège de France Seminar, vol XI, Paris, 1989–1991. Pitman research notes in mathematics series, vol 299. Longman Scientific & Technical, Harlow, pp 13–51

    Google Scholar 

  162. Wohlmuth BI (2001) Lectures Notes in Computational Science and Engineering, vol 17

    Google Scholar 

  163. Lamichhane BP, Wohlmuth BI (2004) Computing 72:333

    Article  MathSciNet  MATH  Google Scholar 

  164. Wohlmuth BI (1999) SIAM J Numer Anal 36(5):1636

    Article  MathSciNet  MATH  Google Scholar 

  165. Belgacem FB (1999) Numer Math 84(2):173

    Article  MathSciNet  MATH  Google Scholar 

  166. Ben Dhia H (1998) C R Acad Sci IIB, Mech Phys Astron 326(12):899

    MATH  Google Scholar 

  167. Ben-Dhia H, Rateau G (2005) Int J Numer Methods Eng 62(11):1442

    Article  Google Scholar 

  168. Hu H, Belouettar S, Potier-Ferry M, Daya EM (2008) Finite Elem Anal Des 45(1):37

    Article  Google Scholar 

  169. Eckardt S (2009) PhD thesis, Bauhaus-University Weimar

  170. Bauman PT, Dhia HB, Elkhodja N, Oden JT, Prudhomme S (2008) Comput Mech 42(4):511

    Article  MathSciNet  MATH  Google Scholar 

  171. Xiao SP, Belytschko T (2004) Comput Methods Appl Mech Eng 193(17–20):1645

    Article  MathSciNet  MATH  Google Scholar 

  172. Eckardt S, Könke C (2008) J Algorithms Comput Technol 2(2):275

    Article  Google Scholar 

  173. Winkler B (2001) PhD thesis, University of Innsbruck

  174. van Vliet MRA, van Mier JGM (2000) Eng Fract Mech 65(2–3):165

    Article  Google Scholar 

  175. van Vliet MRA, van Mier JGM (1998) In: de Borst R, van der Giessen E (eds) Material instabilities in solids. Wiley, New York

    Google Scholar 

  176. Jirásek M, Rolshoven S, Grassl P (2004) Int J Numer Anal Methods Geomech 28(7–8):653

    Article  MATH  Google Scholar 

  177. Vořechovský M, Sadílek V (2008) Int J Fract 154(1–2):27

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg F. Unger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unger, J.F., Eckardt, S. Multiscale Modeling of Concrete. Arch Computat Methods Eng 18, 341–393 (2011). https://doi.org/10.1007/s11831-011-9063-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-011-9063-8

Keywords

Navigation