Skip to main content
Log in

Preference and performance in an herbivorous coccinellid beetle: a comparative study of host plant defensive traits, insect preference, and survival

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Herbivorous insects assess and choose their potential host plants based on traits that may correlate with host suitability or quality. These traits may operate as cues for better resources, noxious chemicals, or fewer competitors and enemies. Interactions between insects and their host plants may also be modulated by the nutritional value of the plant, by plant chemical stimuli, or by physical traits such as trichomes. Differences in chemical or physical cues among plants may convey information about diet suitability. Several studies have addressed the topic of differences in plant traits between host and non-host plants; fewer have addressed these differences among potential host plants. We have studied the effect of chemical and physical plant traits on the feeding and oviposition preferences of the oligophagous herbivore Epilachna paenulata (Coleoptera: Coccinellidae) and two of its host plants, Cucurbita maxima and Cucurbita moschata (Cucurbitaceae). We first typified the volatile and non-volatile chemical profiles and the trichome distribution of the plants. Then, using behavioral assays, we evaluated feeding and oviposition preferences of E. paenulata. Further, to assess a correlation between oviposition preferences and offspring survival, we measured larval performance as indicated by survival, mass, and time to complete each instar. Female longevity in both Cucurbita host plants was also evaluated. Our results show that the congeneric plants bear differences in their chemical profiles, including volatile organic compounds, leaf waxes, and leaf parenchyma metabolites. Trichome abundance was also different, with C. maxima presenting fewer hairs. Epilachna paenulata females laid significantly more eggs in C. maxima, regardless of the plant they were raised as larvae. Female longevity on C. maxima was higher, but larval performance showed no difference between both plants. The proximate causes mediating female oviposition preferences may then involve trichome abundance, oviposition deterrents, toxic substances, or a combination of these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All relevant material was included in the manuscript or the Supplementary Material.

References

  • Abdullah F, Abdullah F (2009) The behavior and feeding preference of the 12-spotted beetle Epilachna indica Mulstant (Coleoptera: Coccinellidae: subfamily Epilachninae) towards the black nightshade Solanum nigrum (family: Solanacea). Journal of Entomology 6(4):167–178. https://doi.org/10.3923/je.2009.167.178

    Article  Google Scholar 

  • Abe M, Matsuda K, Tamaki Y (2000) Differences in feeding response among three cucurbitaceous feeding leaf beetles to cucurbitacins. Appl Entomol Zool 35(1):137–142

    Article  Google Scholar 

  • Adams R (2007) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Pub. Corp, Carol Stream

    Google Scholar 

  • Afroz M, Amin MR, Miah MRU, Hossain MM (2022) Effect of leaf characteristics of sweet gourd germplasms on the population abundance and infestation of epilachna beetle (Epilachna. spp). Serangga 27(1):72–82

    Google Scholar 

  • Ameen A, Story R (1997) Feeding preferences of larval and adult Microtheca ochroloma (Coleoptera: Chrysomelidae) for crucifer foliage. J Agric Entomol (USA) 14(4):363–368

    Google Scholar 

  • Andersen JF, Metcalf RL (1987) Factors influencing distribution of Diabrotica spp. in blossoms of cultivated Cucurbita spp. J Chem Ecol 13(4):681–699. https://doi.org/10.1007/BF01020152

    Article  CAS  PubMed  Google Scholar 

  • Asafuddaullah M, Uddin MM, Islam KS, Howlader MTH, Rahman MM (2015) Host preference of epilachna beetle, epilachna dodecastigma (Wied.) among Cucurbitaceous vegetables. Int J Appl Sci Biotechnol 3(2):352–358. https://doi.org/10.3126/ijasbt.v3i2.12809

    Article  Google Scholar 

  • Awadalla S, Abd-Wahab HA, El-Baky A, Abdel-Salam SS (2011) Host plant preference of the melon ladybird bettle Epilachna chrysomelina (F.) (Coleoptera: Coccinellidae) on different cucurbit vegetables in mansoura region. J Plant Prot Pathol 2(1):41–47

    Google Scholar 

  • Bernays E (2001) Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. Annu Rev Entomol 46(1):703–727. https://doi.org/10.1146/annurev.ento.46.1.703

    Article  CAS  PubMed  Google Scholar 

  • Bernays EA, Chapman RF (2007) Host-plant selection by phytophagous insects. Springer Science & Business Media, Berlin

    Google Scholar 

  • Bernays E, Weiss M (1996) Induced food preferences in caterpillars: the need to identify mechanisms. Entomol Exp Appl 78(1):1–8

    Article  Google Scholar 

  • Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, Van Ommen B, Smilde AK (2006) Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem 78(2):567–574. https://doi.org/10.1021/ac051495j

    Article  CAS  PubMed  Google Scholar 

  • Busta L, Jetter R (2017) Moving beyond the ubiquitous: the diversity and biosynthesis of specialty compounds in plant cuticular waxes. Phytochem Rev 17(6):1275–1304. https://doi.org/10.1007/s11101-017-9542-0

    Article  CAS  Google Scholar 

  • Camarano S, González A, Rossini C (2006) Chemical defense of the ladybird beetle Epilachna paenulata. Chemoecology 16(4):179–184

    Article  CAS  Google Scholar 

  • Castillo L, González-Coloma A, González A, Díaz M, Santos E, Alonso-Paz E, Bassagoda MJ, Rossini C (2009) Screening of Uruguayan plants for deterrent activity against insects. Ind Crops Prod 29(1):235–240. https://doi.org/10.1016/j.indcrop.2008.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Coyle DR, Clark KE, Raffa KF, Johnson SN (2011) Prior host feeding experience influences ovipositional but not feeding preference in a polyphagous insect herbivore. Entomol Exp Appl 138(2):137–145. https://doi.org/10.1111/j.1570-7458.2010.01083.x

    Article  Google Scholar 

  • Dethier VG (1937) Gustation and olfaction in lepidopterous larvae. Biol Bull 72(1):7–23

    Article  Google Scholar 

  • Dethier VG (1953) Summation and inhibition following contralateral stimulation of the tarsal chemoreceptors of the blowfly. Biol Bull 105(2):257–268

    Article  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants. A Study in Coevolution Evolution 18(4):586–608

    Google Scholar 

  • El-Sayed, A. M. (2012). The pherobase: database of pheromones and semiochemicals, 2003–2012 the pherobase: .

  • Feeny P (1991) Chemical constraints on the evolution of swallowtail butterflies. Plant-animal interactions: evolutionary ecology in tropical and temperate regions. . John Wiley, New York, pp 315–340

    Google Scholar 

  • Filewood LW (1990) Host preference of Epilachna ocellata Redt. (Coleoptera: Coccinellidae) among different vegetable crops. J Entomol Res 14(1):39–43

    Google Scholar 

  • Fraenkel GS (1959) Raison d’être of secondary plant substances. Science 129(3361):1466–1470

    Article  CAS  PubMed  Google Scholar 

  • Fujiyama N, Katakura H (2002) Host plant suitability of a recently naturalized thistle Cirsium vulgare (Asteraceae) for a phytophagous ladybird beetle, Epilachna pustulosa (Coleoptera: Coccinellidae). Ecol Res 17(3):275–282

    Article  Google Scholar 

  • Ganho N, Marinoni R (2000) Some reproductive and onthogenetic characteristics of Epilachna paenulata (Germar, 1824) (Coleoptera: Coccinelidae, Epilachninae). Rev Bras Zool 17(2):445–454

    Article  Google Scholar 

  • Gripenberg S, Mayhew PJ, Parnell M, Roslin T (2010) A meta-analysis of preference-performance relationships in phytophagous insects. Ecol Lett 13(3):383–393. https://doi.org/10.1111/j.1461-0248.2009.01433.x

    Article  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electronica 4(1):9

    Google Scholar 

  • Harris RL, Davies NW, Nicol SC (2012) Chemical composition of odorous secretions in the Tasmanian short-beaked echidna (Tachyglossus aculeatus setosus). Chem Senses 37(9):819–836

    Article  CAS  PubMed  Google Scholar 

  • Jaenike J (1978) On optimal oviposition behavior in phytophagous insects. Theor Popul Biol 14(3):350–356. https://doi.org/10.1016/0040-5809(78)90012-6

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Lan S, Wang Z, Pu X, Zhuang L (2022) Analysis of the volatile components in different parts of three Ferula species via combined DHSA-GC-MS and multivariate statistical analysis. Lwt 167:113846. https://doi.org/10.1016/j.lwt.2022.113846

    Article  CAS  Google Scholar 

  • Jones LC, Rafter MA, Walter GH (2022) Host interaction mechanisms in herbivorous insects – life cycles, host specialization and speciation. Biol J Lin Soc 137(1):1–14. https://doi.org/10.1093/biolinnean/blac070

    Article  Google Scholar 

  • Katakura H, Shioi M, Kira Y (1989) Reproductive isolation by host specificity in a pair of phytophagous ladybird beetles. Evolution 43(5):1045–1053. https://doi.org/10.1111/j.1558-5646.1989.tb02549.x

    Article  PubMed  Google Scholar 

  • Kellogg DW, Taylor TN, Krings M (2002) Effectiveness in defense against phytophagous arthropods of the cassabanana (Sicana odorifera) glandular trichomes. Entomol Exp Appl 103(2):187–189

    Article  Google Scholar 

  • Kim HK, Choi YH, Verpoorte R (2011) NMR-based metabolomic analysis of plants. Nat Protoc 5(3):536–549. https://doi.org/10.1038/nprot.2009.237

    Article  CAS  Google Scholar 

  • Kolb-Lenz D, Müller M (2003) Different trichome types on the leaves of styrian oil pumpkin. Phyton; Annales Rei Botanicae 43(2):365–379

    Google Scholar 

  • Kolb-Lenz D, Müller M (2004) Light, conventional and environmental scanning electron microscopy of the trichomes of Cucurbita pepo subsp. pepo var. styriaca and histochemistry of glandular secretory products. Ann Bot 94(4):515–526. https://doi.org/10.1093/aob/mch180

    Article  Google Scholar 

  • Levin DA (1973) The role of trichomes in plant defense. Quarterly Rev Biol 48(1,Part1):3–15

    Article  Google Scholar 

  • Li SY, Chen C, Jia ZY, Li Q, Tang ZZ, Zhong MF, Zhu H, Hao DJ (2021) Offspring performance and female preference of Pagiophloeus tsushimanus (Coleoptera: Curculionidae) on three Lauraceae tree species: a potential risk of host shift caused by larval experience. J Appl Entomol 145(6):530–542. https://doi.org/10.1111/jen.12865

    Article  Google Scholar 

  • Linstrom, P. and W. Mallard (2008). NIST Chemistry WebBook (National Institute of Standards and Technology, Gaithersburg, MD) NIST Standard Reference Database Number 69. The values of PMOS were taken using anisole as the model compound.

  • Lowry, R. (2022). VassarStats: Web site for statistical computation. December, 2022, from http://faculty.vassar.edu/lowry/wilcoxon.html.

  • Marinoni RC, Ribeiro CS (1987) Bionomics of Epilachna paenulata Germar 1824 (Coleoptera Coccinellidae) in 4 different host plants Cucurbitaceae. Revista Brasileira De Entomologia 31(3):421–430

    Google Scholar 

  • Massutti Almeida L, Marinoni R (1986) Desenvolvimento de três espécies de Epilachna (Coleoptera: Coccinellidae) em três combinações de temperatura e fotoperíodo. Pesq Agropec Bras 21(9):927–939

    Google Scholar 

  • Mattson WJ Jr (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11(1):119–161

    Article  Google Scholar 

  • Mayhew PJ (1997) Adaptive patterns of host-plant selection by phytophagous insects. Oikos 79:417–428

    Article  Google Scholar 

  • Mayhew PJ (2001) Herbivore host choice and optimal bad motherhood. Trends Ecol Evol 16(4):165–167. https://doi.org/10.1016/s0169-5347(00)02099-1

    Article  PubMed  Google Scholar 

  • McLafferty F, Turecek F (1993) Interpretation of Mass Spectra. University Science Books, Mill Valley

    Google Scholar 

  • Metcalfe CR, Chalk L (1950) Anatomy of the Dicotyledons: leaves, stem, and wood, in relation to taxonomy, with notes on economic uses. Clarendon Press, Universidad de Michigan, Michigan

    Google Scholar 

  • Mithöfer A, Boland W (2008) Recognition of herbivory-associated molecular patterns. Plant Physiol 146(3):825–831. https://doi.org/10.1104/pp.107.113118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mithöfer A, Boland W, Maffei ME (2009) Chemical ecology of plant-insect interactions. annual plant reviews: molecular aspects of plant disease resistance. J Parker, Chirchester: Wiley-Blackwell 34:261–291

    Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450. https://doi.org/10.1146/annurev-arplant-042110-103854

    Article  CAS  PubMed  Google Scholar 

  • Moghbeli Gharaei A, Ziaaddini M, Frérot B, Nejad Ebrahimi S, Jalali MA, Reddy GVP (2020) Identification and evaluation of four cucurbitaceous host plant volatiles attractive to Diaphania indica (Saunders) (Lep.: Pyralidae). Chemoecology 30(4):173–182. https://doi.org/10.1007/s00049-020-00308-2

    Article  Google Scholar 

  • Nufio CR, Papaj DR (2001) Host marking behavior in phytophagous insects and parasitoids. Entomol Exp Appl 99(3):273–293

    Article  Google Scholar 

  • Papaj DR (2000) Ovarian dynamics and host use. Annu Rev Entomol 45:123–448. https://doi.org/10.1146/annurev.ento.45.1.423

    Article  Google Scholar 

  • Paris HS, Brown RN (2005) The genes of pumpkin and squash. HortScience 40(6):1620–1630

    Article  CAS  Google Scholar 

  • Peterson JK, Horvat RJ, Elsey KD (1994) Squash leaf glandular trichome volatiles: identification and influence on behavior of female Pickleworm moth [Diaphania nitidalis (Stoll)] (Lepidoptera, Pyralidae). J Chem Ecol 20(8):2099–2109. https://doi.org/10.1007/BF02066246

    Article  CAS  PubMed  Google Scholar 

  • Petrén H, Gloder G, Posledovich D, Wiklund C, Friberg M (2021) Innate preference hierarchies coupled with adult experience, rather than larval imprinting or transgenerational acclimation, determine host plant use in Pieris rapae. Ecol Evol 11(1):242–251. https://doi.org/10.1002/ece3.7018

    Article  PubMed  Google Scholar 

  • Piersanti S, Saitta V, Rebora M, Salerno G (2022) Olfaction in phytophagous ladybird beetles: antennal sensilla and sensitivity to volatiles from host plants in Chnootriba elaterii. Arthropod-Plant Interactions 16(6):617–630. https://doi.org/10.1007/s11829-022-09923-y

    Article  Google Scholar 

  • Rabei S, Rizk RM, Khedr AHA (2013) Keys for and morphological character variation in some Egyptian cultivars of Cucurbitaceae. Genet Resour Crop Evol 60(4):1353–1364. https://doi.org/10.1007/s10722-012-9924-5

    Article  Google Scholar 

  • Richards AM, Filewood LW (1990) Feeding behavior and food preferences of the pest species comprising the Epilachna vigintioctopunctata (F) complex (Col, Coccinellidae). J Appl Entomol 110(5):501–515

    Article  Google Scholar 

  • Scatoni, I. B. and C. Bentancourt (2010). Guía de insectos y ácaros de importancia agrícola y forestal en el Uruguay. Montevideo, Hemisferio Sur.

  • Scheirs J, De Bruyn L, Verhagen R (2000) Optimization of adult performance determines host choice in a grass miner. Proc Biol Sci 267(1457):2065–2069. https://doi.org/10.1098/rspb.2000.1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Rennenberg H, Wilson LG, Filner P (1985) Formation of methanethiol from methionine by leaf tissue. Phytochemistry 24(6):1181–1185

    Article  CAS  Google Scholar 

  • Soler R, Pineda A, Li Y, Ponzio C, van Loon JJA, Weldegergis BT, Dicke M (2012) Neonates know better than their mothers when selecting a host plant. Oikos 121(12):1923–1934. https://doi.org/10.1111/j.1600-0706.2012.20415.x

    Article  Google Scholar 

  • Takeuchi M, Kishikawa H, Tamura M (2005) Host use in relation to food availability and larval development in the specialist herbivore Epilachna admirabilis (Coleoptera: Coccinelidae). Appl Entomol Zool 40(1):177–184. https://doi.org/10.1303/aez.2005.177

    Article  Google Scholar 

  • Team RDC (2013) R: a language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Thompson (1988) Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl 47:3–14

    Article  Google Scholar 

  • Thorsteinson AJ (1960) Host selection in phytophagous insects. Annu Rev Entomol 5:193–218

    Article  Google Scholar 

  • Verschaffelt E (1911) The cause determining the selection of food in some herbivorous insects. Proc Acad Sci Amsterdam 13:536

    Google Scholar 

  • Vitiello A, Molisso D, Digilio MC, Giorgini M, Corrado G, Bruce TJA, D’Agostino N, Rao R (2020) Zucchini plants alter gene expression and emission of (E)-beta-caryophyllene following Aphis gossypii infestation. Front Plant Sci 11:592603. https://doi.org/10.3389/fpls.2020.592603

    Article  PubMed  Google Scholar 

  • Wagner D, Doak P (2017) Oviposition, larval survival and leaf damage by the willow leaf blotch miner, Micrurapteryx salicifoliella, in relation to leaf trichomes across 10Salixspecies. Ecological Entomology 42(5):629–635. https://doi.org/10.1111/een.12431

    Article  Google Scholar 

  • Wilson LJ (1986) Movement and feeding patterns of Epilachna cucurbitae richards (Coleoptera:Coccinellidae) on pumpkin and zucchini plants. Aust J Ecol 11(1):55–62. https://doi.org/10.1111/j.1442-9993.1986.tb00917.x

    Article  Google Scholar 

  • Xia J, Wishart DS (2016) Using metaboanalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics. https://doi.org/10.1002/cpbi.11

    Article  PubMed  Google Scholar 

  • Yamaga Y, Ohgushi T (1999) Preference-performance linkage in a herbivorous lady beetle: consequences of variability of natural enemies. Oecologia 119(2):183–190. https://doi.org/10.1007/s004420050775

    Article  PubMed  Google Scholar 

  • Yoshihisa A, Nakamura T, Inoue H (2000) Exploitation of Fabaceae plants by the Mexican bean beetle Epilachna varivestis (Coleoptera: Coccinellidae) in Japan. Appl Entomol Zool 35(1):81–85

    Article  Google Scholar 

  • Zajaczkowska U, Kucharski S, Guzek D (2015) Are trichomes involved in the biomechanical systems of Cucurbita leaf petioles? Planta 242(6):1453–1465. https://doi.org/10.1007/s00425-015-2388-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Horacio Pezzaroglio, Andrés López, and Guillermo Moyna for technical assistance in the NMR analyses; and Claudia Da Luz for initial guidance in recognition of trichomes.

Funding

Financial support was received from grants from ANII (FCE_2009_1_3107 (CR), Becas de Iniciación a la Investigación, Modalidad I—2013 (DE and BD)) and CSIC (Comisión Sectorial de Investigación Científica, Universidad de la República, Uruguay. Programa Grupos, CSIC-Grupos (CR and AG)), and Programa de Desarrollo de las Ciencias Básicas (PEDECIBA, CR and AG).

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute to the different experiments: CR conceived the presented idea. CR, ED, BD, and MD conceived and performed chemical analyses; APB and MEA performed oviposition experiments; larval assays were performed by BD; trichome analyses were performed by APB. CR wrote the manuscript with input from APB, MEA, and AG. CR and AG were responsible for the funding grants.

Corresponding author

Correspondence to Carmen Rossini.

Ethics declarations

Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article in any aspect, including financial and non-financial issues. No research involving human participants has been done during the activities depicted in this manuscript. Insects and plants were rightly handled.

Ethical approval

Ethics approval was not required.

Additional information

Handling Editor: Michelle Amy Rafter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1722 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgueño, A.P., Amorós, M.E., Deagosto, E. et al. Preference and performance in an herbivorous coccinellid beetle: a comparative study of host plant defensive traits, insect preference, and survival. Arthropod-Plant Interactions (2023). https://doi.org/10.1007/s11829-023-10004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11829-023-10004-x

Keywords

Navigation