Skip to main content
Log in

Chemosensorisch induzierte Arousals im Schlaf – eine erweiterte Studie

Chemosensory arousals during sleep – an extended study

  • ORIGINALARBEIT
  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Summary

Question of the study

The interaction of sensory physiology and sleep has been studied for various sensory systems. Nevertheless, the question whether chemosensory stimuli may lead to arousals during sleep remains under discussion.

Patients and methods

Five young healthy volunteers were included; they were investigated during a total of 37 nights. Intranasal chemosensory stimulation was based on air-dilution olfactometry. For selective olfactory stimulation, H2S, and for trigeminal stimulation CO2was administered in four concentrations each while odorless stimuli were used for control. Arousals were assessed during 30 s intervals after every stimulus using overnight polysomnography.

Results

For olfactory testing an average number of 756 olfactory stimuli and 186 controls were used for analysis per subject. Even the highest stimulus concentration did not produce an increase in arousal frequency. For trigeminal testing an average number of 927 stimuli and 223 controls were used for analysis per subject. The trigeminal stimuli produced a significant, linear increase in arousal frequency in relation to stimulus concentration.

Conclusions

With the present results we were able to demonstrate that, in contrast to trigeminal stimulation, the presentation of a strong but selective olfactory stimulus does not lead to arousals in non-REM or in REM sleep.

Zusammenfassung

Fragestellung

Der Einfluss von Sinnesreizen auf den Schlaf wurde für die meisten Sinneskanäle umfassend untersucht. Für die chemosensorischen Sinne liegen jedoch kaum Untersuchungen vor. Ob olfaktorische oder trigeminale Reize in der Lage sind, Arousals auszulösen, kann aufgrund der bisherigen Datenlage kaum beantwortet werden.

Patienten und Methoden

5 junge Probandinnen wurden in 37 Nächten untersucht. Die intranasale chemosensorische Stimulation erfolgte mit einem Fluss-Olfaktometer, wobei H2S zur olfaktorischen und CO2zur trigeminalen Stimulation in jeweils 4 Konzentrationen verwendet wurde. Daneben wurde Raumluft als Kontrollreiz verwendet. Arousals wurden mit einer parallelen Polysomnographie in einem Zeitfenster von 30 s nach Stimulation erfasst.

Ergebnisse

Bezüglich der olfaktorischen Stimulation konnte eine mittlere Anzahl von 756 olfaktorischen Reizen und 186 Kontrollreizen pro Proband ausgewertet werden. Auch die höchste Konzentration von H2S führte im Vergleich zu Raumluft nicht zu einer Zunahme der Arousalhäufigkeit. Für die Auswertung der trigeminalen Reizung standen im Mittel 927 trigeminale Stimulationen bzw. 223 Kontrollreize zur Verfügung. Hierbei zeigte sich eine signifikante, lineare Zunahme der Arousalhäufigkeit mit zunehmender Reizintensität.

Schlussfolgerung

Während die Ergebnisse der trigeminalen Testung andere Publikationen zu nozizeptiven Reizen im Schlaf bestätigen, konnte erstmals gezeigt werden, dass eine rein olfaktorische Stimulation im Gegensatz zu anderen Sinnessystemen nicht zur Entstehung von Arousals führt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Gottfried JA (2006) Smell: central nervous processing. Adv Otorhinolaryngol 63:44–69

    PubMed  Google Scholar 

  2. Thomas M, Sing H, Belenky G, Holcomb H, Mayberg H, Dannals R, Wagner H, Thorne D, Popp K, Rowland L, Welsh A, Balwinski S, Redmond D (2000) Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res 9(4):335–352

    Article  PubMed  CAS  Google Scholar 

  3. Killgore WDS, McBride SA (2006) Odor identification accuracy declines following 24h of sleep deprivation. J Sleep Res 15(2):111–116

    Article  PubMed  Google Scholar 

  4. McBride SA, Balkin TJ, Kamimori GH, Killgore WDS (2006) Olfactory decrements as a function of two night of sleep deprivation. J Sensory Studies 21(4):456–463

    Article  Google Scholar 

  5. Stuck BA, Weitz H, Hörmann K, Maurer JT, Hummel T (2006) Chemosensory event-related potentials during sleep – a pilot study. Neuroscience Letters 406(3):222–226

    Article  PubMed  CAS  Google Scholar 

  6. Badia P, Wesensten N, Lammers W, Culpepper J, Harsh J (1990) Responsiveness to olfactory stimuli presented in sleep. Physiol Behav 48(1):87–90

    Article  PubMed  CAS  Google Scholar 

  7. Carskadon MA Herz RS (2004) Minimal olfactory perception during sleep: why odor alarms will not work for humans. Sleep 27(3):402–405

    PubMed  Google Scholar 

  8. Doty RL, Brugger WE, Jurs PC, Orndorff MA, Snyder PJ, Lowry LD (1978) Intranasal trigeminal stimulation from odorous volatiles: psychometric responses from anosmic and normal humans. Physiol Behav 20(2):175–185

    Article  PubMed  CAS  Google Scholar 

  9. Hummel T, Livermore A (2002) Intranasal chemosensory function of the trigeminal nerve and aspects of its relation to olfaction. Int Arch Occup Environ Health 75(5):305–313

    Article  PubMed  Google Scholar 

  10. Bastien CH, Ladouceur C, Campbell KB (2000) EEG characteristics prior to and following the evoked K-Complex. Can J Exp Psychol 54(4):255–265

    PubMed  CAS  Google Scholar 

  11. Catcheside PG, Chiong SC, Mercer J, Saunders NA, McEvoy RD (2002) Noninvasive cardiovascular markers of acoustically induced arousal from nonrapid- eye-movement sleep. Sleep 25(7):797–804

    PubMed  Google Scholar 

  12. Ferrara M, De Gennaro L, Casagrande M, Bertini M (1999) Auditory arousal thresholds after selective slow-wave sleep deprivation. Clin Neurophysiol 110(12):2148–2152

    Article  PubMed  CAS  Google Scholar 

  13. Kato T, Montplaisir JY, Lavigne GJ (2004) Experimentally induced arousals during sleep: a cross-modality matching paradigm. J Sleep Res 13(3):229–238

    Article  PubMed  CAS  Google Scholar 

  14. Drewes AM, Nielsen KD, Arendt-Nielsen L, Birket-Smith L, Hansen LM (1997) The effect of cutaneous and deep pain on the electroencephalogram during sleep – an experimental study. Sleep 20(8):632–640

    PubMed  CAS  Google Scholar 

  15. Lavigne G, Brousseau M, Kato T, Mayer P, Manzini C, Guitard F, Monplaisir J (2004) Experimental pain perception remains equally active over all sleep stages. Pain 110(3):646–655

    Article  PubMed  Google Scholar 

  16. Lavigne G, Zucconi M, Castronovo C, Manzini C, Marchettini P, Smirne S (2000) Sleep arousal response to experimental thermal stimulation during sleep in human subjects free of pain and sleep problems. Pain 84(2–3):283–290

    Article  PubMed  CAS  Google Scholar 

  17. Neville KR, Haberly LB (2004) Olfactory cortex. In: Shepherd GM: The synaptic organization of the brain. Oxford University Press, New York, pp 415–454

  18. Steriade M, Jones EG, McCormick DA (1997) The thalamus during brain disconnection. In: Steriade M, Jones EG, McCormick DA: Thalamus. Elsevier, Amsterdam, pp 536–549

  19. Murakami M, Kashiwadani H, Kirino Y, Mori K (2005) State-dependent sensory gating in olfactory cortex. Neuron 46(2):285–296

    Article  PubMed  CAS  Google Scholar 

  20. Stuck BA, Stieber K, Frey S, Freiburg Ch, Hörmann K, Maurer JT, Hummel T (2007) Arousal responses to olfactory or trigeminal stimulation during sleep. Sleep 30(4):506–510

    PubMed  Google Scholar 

  21. Hummel T, Barz S, Pauli E, Kobal G (1998) Chemosensory event-related potentials change as a function of age. Electroenceph Clin Neurophysiol 108(2):208–217

    Article  PubMed  CAS  Google Scholar 

  22. Stuck BA, Frey S, Freiburg C, Hörmann K, Zahnert T, Hummel T (2006) Chemosensory event-related potentials in relation to side of stimulation, age, sex, and stimulus concentration. Clin Neurophysiol 117(6):1367–1375

    Article  PubMed  CAS  Google Scholar 

  23. Ackerman BH, Kasbekar N (1997) Disturbances of taste and smell induced by drugs. Pharmacotherapy 17(3):482–496

    PubMed  CAS  Google Scholar 

  24. Kobal G, Klimek L, Wolfensberger M, Gudziol H, Temmel A, Owen CM, Seeber H, Pauli E, Hummel T (2000) Multicenter investigation of 1,036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds. Eur Arch Otorhinolaryngol 257(4):205–211

    Article  PubMed  CAS  Google Scholar 

  25. Wolfensberger M, Schnieper I, Welge- Lussen A (2000) Sniffin’ Sticks: a new olfactory test battery. Acta Otolaryngol 120(2):303–306

    Article  PubMed  CAS  Google Scholar 

  26. Rechtschaffen A, Kales A (1968) A manual of standardized technology, techniques and scoring system for sleep stages of human sleep. Brain Information Service/Brain Research Institute, UCLA, Los Angeles

  27. Atlas task force of the American Sleep Disorders Association (1992) EEG Arousals: scoring rules and examples. Sleep 15(2):174–184

  28. Kobal G (1981) Elektrophysiologische Untersuchungen des menschlichen Geruchssinns. Thieme Verlag, Stuttgart

  29. Hummel T, Kobal G (2001) Olfactory event-related potentials. In: Simon SA, Nicolelis MAL: Methods and frontiers in chemosensory research. CRC press, Boca Raton, pp 429–464

  30. Hummel T, Knecht M, Kobal G (1996) Peripherally obtained electrophysiological responses to olfactory stimulation in man: electro-olfactograms exhibit a smaller degree of desensitization compared with subjective intensity estimates. Brain Res 717(1–2):160–164

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Stuck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuck, B.A., Grupp, K., Frey, S. et al. Chemosensorisch induzierte Arousals im Schlaf – eine erweiterte Studie. Somnologie 12, 212–218 (2008). https://doi.org/10.1007/s11818-008-0349-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-008-0349-5

Key words

Schlüsselwörter

Navigation