Skip to main content
Log in

Epigenetics: Toward improving crop disease resistance and agronomic characteristics

  • Review
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The performance of crop plants is critically affected by biotic and abiotic stress. These stressors threaten food availability by reducing overall crop yield and productivity. Changes in chromatin state by epigenetic modification are part of plant adaptive and survival responses and are considered pivotal for improving agronomic traits. Epigenetics is an exciting field that involves heritable gene expression changes that do not require changes in DNA sequence. Epigenetic modification is well known as a crucial player in plant phenotypic diversity and defense against pathogens. Hence, there is a growing interest in unlocking the epigenome for crop improvement. Herein, we highlight the epigenetic modifications implicated in plant biotic stress response and their contributions to important agronomic traits. We also discussed adopting epigenetics to expand phenotypic diversity and produce desired characteristics in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figure. 2

Similar content being viewed by others

Data availability

The data sets for this study are available from the corresponding author upon reasonable request.

References

  • Agarwal G et al (2020) Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement. Funct Integr Genomics 20(6):739–761

    Article  CAS  PubMed  Google Scholar 

  • Agorio A, Vera P (2007) ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell 19(11):3778–3790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akhter MS et al (2021) Resistance induction based on the understanding of molecular interactions between plant viruses and host plants. Virol J 18(1):176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akimoto K et al (2007) Epigenetic inheritance in rice plants. Ann Bot 100(2):205–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aktar MW et al (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  PubMed Central  PubMed  Google Scholar 

  • Alvarez-Venegas R et al (2007) Epigenetic control of a transcription factor at the cross section of two antagonistic pathways. Epigenetics 2(2):106–113

    Article  PubMed  Google Scholar 

  • Angel A et al (2011) A Polycomb-based switch underlying quantitative epigenetic memory. Nature 476(7358):105–108

    Article  CAS  PubMed  Google Scholar 

  • Angers B et al (2020) Sources of epigenetic variation and their applications in natural populations. Evol Appl 13(6):1262–1278

    Article  PubMed Central  PubMed  Google Scholar 

  • Annacondia ML et al (2018) Stress response regulation by epigenetic mechanisms: changing of the guards. Physiol Plant 162(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Atighi MR et al (2020) Genome-wide DNA hypomethylation shapes nematode pattern-triggered immunity in plants. New Phytol 227(2):545–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ayyappan V et al (2015) Genome-wide profiling of histone modifications (H3K9me2 and H4K12ac) and gene expression in Rust (Uromyces appendiculatus) inoculated common bean (Phaseolus vulgaris L.). PLoS ONE 10(7):e0132176

    Article  PubMed Central  PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barbour H et al (2020) Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat Commun 11(1):5947

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Bastow R et al (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427(6970):164–167

    Article  CAS  ADS  PubMed  Google Scholar 

  • Baubec T et al (2009) Effective, homogeneous and transient interference with cytosine methylation in plant genomic DNA by zebularine. Plant J 57(3):542–554

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431(7006):356–363

    Article  CAS  ADS  PubMed  Google Scholar 

  • Bender J (2004) DNA methylation and epigenetics. Annu Rev Plant Biol 55:41–68

    Article  CAS  PubMed  Google Scholar 

  • Berr A et al (2010) Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi. Plant Physiol 154(3):1403–1414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biémont C, Vieira CJN (2006) Junk DNA as an evolutionary force. Nature 443(7111):521–524

    Article  ADS  PubMed  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Bratzel F et al (2010) Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. Curr Biol 20(20):1853–1859

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJ (2012) GM as a route for delivery of sustainable crop protection. J Exp Bot 63(2):537–541

    Article  CAS  PubMed  Google Scholar 

  • Buck-Sorlin G (2013) Process-based model. In: Dubitzky W, Wolkenhauer O, Cho K-H, Yokota H (eds) Encyclopedia of systems biology. Springer, New York, pp 1755–1755

    Chapter  Google Scholar 

  • Burgyán J, Havelda Z (2011) Viral suppressors of RNA silencing. Trends Plant Sci 16(5):265–272

    Article  PubMed  Google Scholar 

  • Bürling K et al (2011) Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat. J Plant Physiol 168(14):1641–1648

    Article  PubMed  Google Scholar 

  • Butterbach P et al (2014) Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc Natl Acad Sci U S A 111(35):12942–12947

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Cahon T et al (2018) Do aphids alter leaf surface temperature patterns during early infestation? InSects 9(1):34

    Article  PubMed Central  PubMed  Google Scholar 

  • Calil IP, Fontes EPB (2017) Plant immunity against viruses: antiviral immune receptors in focus. Ann Bot 119(5):711–723

    CAS  PubMed  Google Scholar 

  • Cao Y et al (2008) Histone H2B monoubiquitination in the chromatin of flowering locus C regulates flowering time in Arabidopsis. Plant Cell 20(10):2586–2602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cavrak VV et al (2014) How a retrotransposon exploits the plant’s heat stress response for its activation. PLoS Genet 10(1):e1004115

    Article  PubMed Central  PubMed  Google Scholar 

  • Chandler VL (2007) Paramutation: from maize to mice. Cell 128(4):641–645

    Article  CAS  PubMed  Google Scholar 

  • Chellappan P et al (2004) Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J Virol 78(14):7465–7477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen X, Zhou DX (2013) Rice epigenomics and epigenetics: challenges and opportunities. Curr Opin Plant Biol 16(2):164–169

    Article  CAS  PubMed  Google Scholar 

  • Chen J et al (2020) Reprogramming and remodeling: transcriptional and epigenetic regulation of salicylic acid-mediated plant defense. J Exp Bot 71(17):5256–5268

    Article  CAS  PubMed  Google Scholar 

  • Choi HW, Klessig DF (2016) DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol 16(1):232

    Article  PubMed Central  PubMed  Google Scholar 

  • Choi SM et al (2012) HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J 71(1):135–146

    Article  CAS  ADS  PubMed  Google Scholar 

  • Cokus SJ et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Colicchio JM et al (2015) DNA methylation and gene expression in Mimulus guttatus. BMC Genomics 16(1):507

    Article  PubMed Central  PubMed  Google Scholar 

  • Cong W et al (2019) Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.). BMC Plant Biol 19(1):282

    Article  PubMed Central  PubMed  Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16(10):524–531

    Article  CAS  PubMed  Google Scholar 

  • Cortijo S et al (2014) Mapping the epigenetic basis of complex traits. Science 343(6175):1145–1148

    Article  CAS  ADS  PubMed  Google Scholar 

  • Cubas P et al (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401(6749):157–161

    Article  CAS  ADS  PubMed  Google Scholar 

  • Cui H et al (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:487–511

    Article  CAS  PubMed  Google Scholar 

  • Cutter AR, Hayes JJ (2015) A brief review of nucleosome structure. FEBS Lett 589(20 PT A):2914–2922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Datta AJA, Security F (2013) Genetic engineering for improving quality and productivity of crops. Agric Food Security 2(1):1–3

    Google Scholar 

  • De Lucia F et al (2008) A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci U S A 105(44):16831–16836

    Article  PubMed Central  ADS  PubMed  Google Scholar 

  • Deans C, Maggert KA (2015) What do you mean, “epigenetic”? Genetics 199(4):887–896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De-La-Peña C et al (2012) Regulation of disease-responsive genes mediated by epigenetic factors: interaction of Arabidopsis–Pseudomonas. Mol Plant Pathol 13(4):388–398

    Article  PubMed  Google Scholar 

  • Deng Y et al (2017) Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355(6328):962–965

    Article  CAS  ADS  PubMed  Google Scholar 

  • Devesa-Guerra I et al (2020) DNA methylation editing by CRISPR-guided excision of 5-methylcytosine. J Mol Biol 432(7):2204–2216

    Article  CAS  PubMed  Google Scholar 

  • Dhawan R et al (2009) HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell 21(3):1000–1019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diez CM et al (2014) Epigenetics and plant genome evolution. Curr Opin Plant Biol 18:1–8

    Article  CAS  PubMed  Google Scholar 

  • Diezma-Navas L et al (2019) Crosstalk between epigenetic silencing and infection by tobacco rattle virus in Arabidopsis. Mol Plant Pathol 20(10):1439–1452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130(3):413–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding B, Wang GL (2015) Chromatin versus pathogens: the function of epigenetics in plant immunity. Front Plant Sci 6:675

    Article  PubMed Central  PubMed  Google Scholar 

  • Ding SW et al (2004) RNA silencing: a conserved antiviral immunity of plants and animals. Virus Res 102(1):109–115

    Article  CAS  PubMed  Google Scholar 

  • Ding B et al (2012) HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. Plant Cell 24(9):3783–3794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dita M et al (2018) Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Front Plant Sci 9:1468

    Article  PubMed Central  PubMed  Google Scholar 

  • Dowen RH et al (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A 109(32):E2183-2191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dutta A et al (2017) JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time. Plant J 91(6):1015–1028

    Article  CAS  PubMed  Google Scholar 

  • Erdmann RM, Picard CL (2020) RNA-directed DNA methylation. PLoS Genet 16(10):e1009034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esquinas-Alcázar J (2005) Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nat Rev Genet 6(12):946–953

    Article  PubMed  Google Scholar 

  • Fan Y et al (2005) Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123(7):1199–1212

    Article  CAS  PubMed  Google Scholar 

  • Feiner N et al (2022) Environmentally induced DNA methylation is inherited across generations in an aquatic keystone species. iScience 25(5):104303

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Fieldes MA, Amyot LM (2000) Evaluating the potential of using 5-azacytidine as an epimutagen. Can J Bot 77(11):1617–1622

    Article  Google Scholar 

  • Fleury D et al (2007) The Arabidopsis thaliana homolog of yeast BRE1 has a function in cell cycle regulation during early leaf and root growth. Plant Cell 19(2):417–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forsman A (2014) Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology. Proc Natl Acad Sci U S A 111(1):302–307

    Article  CAS  ADS  PubMed  Google Scholar 

  • Franzke A et al (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16(2):108–116

    Article  CAS  PubMed  Google Scholar 

  • Fyodorov DV et al (2018) Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol 19(3):192–206

    Article  CAS  PubMed  Google Scholar 

  • Gallego-Bartolomé J (2020) DNA methylation in plants: mechanisms and tools for targeted manipulation. New Phytol 227(1):38–44

    Article  PubMed  Google Scholar 

  • Gallego-Bartolomé J et al (2018) Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc Natl Acad Sci USA 115(9):E2125–E2134

    Article  PubMed Central  PubMed  Google Scholar 

  • Gallusci P et al (2017) Epigenetics for plant improvement: current knowledge and modeling avenues. Trends Plant Sci 22(7):610–623

    Article  CAS  PubMed  Google Scholar 

  • Gelato KA, Fischle W (2008) Role of histone modifications in defining chromatin structure and function. Biol Chem 389(4):353–363

    Article  CAS  PubMed  Google Scholar 

  • Geng S et al (2019) DNA methylation dynamics during the interaction of wheat progenitor Aegilops tauschii with the obligate biotrophic fungus Blumeria graminis f. sp. tritici. New Phytol 221(2):1023–1035

    Article  CAS  PubMed  Google Scholar 

  • Gil-Humanes J et al (2010) Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proc Natl Acad Sci U S A 107(39):17023–17028

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Göhre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    Article  PubMed  Google Scholar 

  • Griffin PT et al (2016) A comparative analysis of 5-azacytidine- and zebularine-induced DNA demethylation. G3 Bethesda 6(9):2773–2780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grzybkowska D et al (2018) Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis. Int J Mol Sci 85(2):243–256

    CAS  Google Scholar 

  • Guleria P et al (2011) Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. Genomics Proteomics Bioinformatics 9(6):183–199

    Article  CAS  PubMed  Google Scholar 

  • Gupta C, Salgotra RK (2022) Epigenetics and its role in effecting agronomical traits. Front Plant Sci 13:925688

    Article  PubMed Central  PubMed  Google Scholar 

  • Halter T et al (2021) The Arabidopsis active demethylase ROS1 cis-regulates defence genes by erasing DNA methylation at promoter-regulatory regions. Elife 10:e62994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han Y-J, Kim J-I (2019) Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants. Plant Biotechnology Reports 13(5):447–457

    Article  Google Scholar 

  • Hannan Parker A et al (2022) Epigenetics: a catalyst of plant immunity against pathogens. New Phytol 233(1):66–83

    Article  CAS  PubMed  Google Scholar 

  • He Y, Li Z (2018) Epigenetic environmental memories in plants: establishment, maintenance, and reprogramming. Trends Genet 34(11):856–866

    Article  CAS  PubMed  Google Scholar 

  • He XJ et al (2011) Regulation and function of DNA methylation in plants and animals. Cell Res 21(3):442–465

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Hu M et al (2014) Histone H2B monoubiquitination is involved in regulating the dynamics of microtubules during the defense response to Verticillium dahliae toxins in Arabidopsis. Plant Physiol 164(4):1857–1865

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Huang Y et al (2016) Identification of SET domain-containing proteins in Gossypium raimondii and their response to high temperature stress. Sci Rep 6:32729

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Huang M et al (2022) Active DNA demethylation regulates MAMP-triggered immune priming in Arabidopsis. J Genet Genomics 49:796–809

    Article  CAS  PubMed  Google Scholar 

  • Huisman C et al (2016) Re-expression of selected epigenetically silenced candidate tumor suppressor genes in cervical cancer by TET2-directed demethylation. Mol Ther 24(3):536–547

    Article  CAS  PubMed Central  MathSciNet  PubMed  Google Scholar 

  • Ito H et al (2013) Evolution of the ONSEN retrotransposon family activated upon heat stress in Brassicaceae. Gene 518(2):256–261

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277(5329):1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Jansen A, Verstrepen KJ (2011) Nucleosome positioning in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 75(2):301–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaskiewicz M et al (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12(1):50–55

    Article  CAS  PubMed  Google Scholar 

  • Jin H et al (2018) Salicylic acid-induced transcriptional reprogramming by the HAC-NPR1-TGA histone acetyltransferase complex in Arabidopsis. Nucleic Acids Res 46(22):11712–11725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johannes F et al (2008) Epigenome dynamics: a quantitative genetics perspective. Nat Rev Genet 9(11):883–890

    Article  CAS  PubMed  Google Scholar 

  • Johannes F et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5(6):e1000530

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson LM et al (2014) SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507(7490):124–128

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Johnson KC et al (2015) The chromatin remodeler SPLAYED negatively regulates SNC1-mediated immunity. Plant Cell Physiol 56(8):1616–1623

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  ADS  PubMed  Google Scholar 

  • Jørgensen S et al (2013) Histone H4 Lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res 41(5):2797–2806

    Article  PubMed Central  PubMed  Google Scholar 

  • Kakutani T et al (1996) Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci U S A 93(22):12406–12411

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Kalb R et al (2014) Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol 21(6):569–571

    Article  CAS  PubMed  Google Scholar 

  • Kellenberger RT et al (2016) Herbivore-Induced DNA demethylation changes floral signalling and attractiveness to pollinators in Brassica rapa. PLoS ONE 11(11):e0166646

    Article  PubMed Central  PubMed  Google Scholar 

  • Kenneth OC et al (2018) Plant growth promoting Rhizobacteria (PGPR): A novel agent for sustainable food production. Am J Agric Biol Sci 14(1):35–54

    Article  Google Scholar 

  • Kim KC et al (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20(9):2357–2371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Konakalla NC et al (2021) Induction of plant resistance in tobacco (Nicotiana tabacum) against tomato spotted wilt orthotospovirus through foliar application of dsRNA. Viruses 13(4):662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kondo H et al (2006) Flowering induced by 5-azacytidine, a DNA demethylating reagent in a short-day plant Perilla frutescens var. crispa. Physiol Plant 127(1):130–137

    Article  CAS  Google Scholar 

  • Konermann S et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588

    Article  CAS  ADS  PubMed  Google Scholar 

  • Kong L et al (2017) A phytophthora effector manipulates host histone acetylation and reprograms defense gene expression to promote infection. Curr Biol 27(7):981–991

    Article  CAS  PubMed  Google Scholar 

  • Kooke R et al (2015) Epigenetic basis of morphological variation and phenotypic plasticity in Arabidopsis thaliana. Plant Cell 27(2):337–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  PubMed  Google Scholar 

  • Kumar SJE (2018) Epigenomics of plant responses to environmental stress. Epigenomes 2(1):6

    Article  Google Scholar 

  • Lämke J, Bäurle I (2017) Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 18(1):124

    Article  PubMed Central  PubMed  Google Scholar 

  • Latutrie M et al (2019) Epigenetic variation for agronomic improvement: an opportunity for vegetatively propagated crops. Am J Bot 106(10):1281–1284

    Article  PubMed Central  PubMed  Google Scholar 

  • Le TN et al (2014) DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol 15(9):458

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee HG et al (2015) Genome-wide activities of Polycomb complexes control pervasive transcription. Genome Res 25(8):1170–1181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee S et al (2016) Global regulation of plant immunity by histone lysine methyl transferases. Plant Cell 28(7):1640–1661

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JE et al (2019) CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants. PLoS ONE 14(9):e0222778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leonetti P et al (2021) Regulation of plant antiviral defense genes via host RNA-silencing mechanisms. Virol J 18(1):194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li B et al (2007) The role of chromatin during transcription. Cell 128(4):707–719

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2011) Induced Pib expression and resistance to Magnaporthe grisea are compromised by cytosine demethylation at critical promoter regions in rice. J Integr Plant Biol 53(10):814–823

    Article  CAS  PubMed  Google Scholar 

  • Li T et al (2013) Jumonji C domain protein JMJ705-mediated removal of histone H3 lysine 27 trimethylation is involved in defense-related gene activation in rice. Plant Cell 25(11):4725–4736

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Li Y et al (2018) Active DNA demethylation: mechanism and role in plant development. Plant Cell Rep 37(1):77–85

    Article  PubMed  Google Scholar 

  • Lira-Medeiros CF et al (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE 5(4):e10326

    Article  PubMed Central  ADS  PubMed  Google Scholar 

  • Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14(1):49–61

    Article  CAS  PubMed  Google Scholar 

  • Liu C et al (2010) Histone methylation in higher plants. Annu Rev Plant Biol 61:395–420

    Article  CAS  PubMed  Google Scholar 

  • Liu R et al (2015) A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc Natl Acad Sci U S A 112(34):10804–10809

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Liu J et al (2018a) Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proc Natl Acad Sci U S A 115(44):11327–11332

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Liu W et al (2018b) RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis. Nat Plants 4(3):181–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Llave C (2004) MicroRNAs: more than a role in plant development? Mol Palnt Pathol 5(4):361–366

    Article  CAS  Google Scholar 

  • Long Y et al (2011) Epigenetic QTL mapping in Brassica napus. Genetics 189(3):1093–1102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • López Sánchez A et al (2016) The role of DNA (de)methylation in immune responsiveness of Arabidopsis. Plant J 88(3):361–374

    Article  PubMed Central  PubMed  Google Scholar 

  • Luan X et al (2019) Epigenetic modification of ESP, encoding a putative long noncoding RNA, affects panicle architecture in rice. Rice (NY) 12(1):20

    Article  Google Scholar 

  • Ma C et al (2018) The effect of promoter methylation on MdMYB1 expression determines the level of anthocyanin accumulation in skins of two non-red apple cultivars. BMC Plant Biol 18(1):108

    Article  PubMed Central  PubMed  Google Scholar 

  • Magits W, Sablina AA (2022) The regulation of the protein interaction network by monoubiquitination. Curr Opin Struct Biol 73:102333

    Article  CAS  PubMed  Google Scholar 

  • Mahlein AK (2016) Plant disease detection by imaging sensors—parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis 100(2):241–251

    Article  PubMed  Google Scholar 

  • Manning K et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38(8):948–952

    Article  CAS  PubMed  Google Scholar 

  • Martin A et al (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461(7267):1135–1138

    Article  CAS  ADS  PubMed  Google Scholar 

  • Mattiroli F, Penengo L (2021) Histone ubiquitination: an integrative signaling platform in genome stability. Trends Genet 37(6):566–581

    Article  CAS  PubMed  Google Scholar 

  • McDowell JM, Simon SA (2008) Molecular diversity at the plant–pathogen interface. Dev Comp Immunol 32(7):736–744

    Article  CAS  PubMed  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14(3):267–274

    Article  CAS  PubMed  Google Scholar 

  • Miura K et al (2009) A metastable DWARF1 epigenetic mutant affecting plant stature in rice. Proc Natl Acad Sci U S A 106(27):11218–11223

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Mohammad VH et al (2022) Drought exposure leads to rapid acquisition and inheritance of herbicide resistance in the weed Alopecurus myosuroides. Ecol Evol 12(2):e8563

    Article  PubMed Central  PubMed  Google Scholar 

  • Moon JY, Park JM (2016) Cross-talk in viral defense signaling in plants. Front Microbiol 7:2068

    Article  PubMed Central  PubMed  Google Scholar 

  • Morrell PL et al (2011) Crop genomics: advances and applications. Nat Rev Genet 13(2):85–96

    Article  MathSciNet  PubMed  Google Scholar 

  • Muñoz-Viana R et al (2017) Arabidopsis chromatin assembly factor 1 is required for occupancy and position of a subset of nucleosomes. Plant J 92(3):363–374

    Article  PubMed  Google Scholar 

  • Nakagawa T, Nakayama K (2015) Protein monoubiquitylation: targets and diverse functions. Genes Cells 20(7):543–562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nations, Department of Economic and S. Affairs (2015) Transforming our world: The 2030 agenda for sustainable development

  • Neupane S et al (2018) Genome-wide identification of NBS-encoding resistance genes in Sunflower (Helianthus annuus L.). Genes (basel) 9(8):384

    Article  PubMed  Google Scholar 

  • Neutzner M, Neutzner A (2012) Enzymes of ubiquitination and deubiquitination. Essays Biochem 52:37–50

    Article  CAS  PubMed  Google Scholar 

  • Nicolopoulou-Stamati P et al (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148

    Article  PubMed Central  PubMed  Google Scholar 

  • Nie X, Molen TA (2015) Host recovery and reduced virus level in the upper leaves after Potato virus Y infection occur in tobacco and tomato but not in potato plants. Viruses 7(2):680–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Odoh CK (2017) Plant growth promoting rhizobacteria (PGPR): a bioprotectant bioinoculant for sustainable agrobiology. A Review. Int J Adv Res Biol Sci (IJARBS) 4(5):123–142

    Article  CAS  Google Scholar 

  • Oerke EC et al (2006) Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J Exp Bot 57(9):2121–2132

    Article  CAS  PubMed  Google Scholar 

  • Osorio C et al (2012) Targeted modification of wheat grain protein to reduce the content of celiac causing epitopes. Funct Integr Genomics 12(3):417–438

    Article  CAS  MathSciNet  PubMed  Google Scholar 

  • Palmgren MG et al (2015) Are we ready for back-to-nature crop breeding? Trends Plant Sci 20(3):155–164

    Article  CAS  PubMed  Google Scholar 

  • Palukaitis P (2011) The road to RNA silencing is paved with plant-virus interactions. The Plant Pathol J 27(3):197–206

    Article  CAS  Google Scholar 

  • Papikian A et al (2019) Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat Commun 10(1):729

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Paszkowski J, Grossniklaus U (2011) Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr Opin Plant Biol 14(2):195–203

    Article  CAS  PubMed  Google Scholar 

  • Patil BL et al (2021) Exogenous dsRNA-mediated field protection against Pigeonpea sterility mosaic emaravirus. J Plant Biochem Biotechnol 30(2):400–405

    Article  CAS  Google Scholar 

  • Pérez-Quintero AL et al (2010) Plant microRNAs and their role in defense against viruses: a bioinformatics approach. BMC Plant Biol 10:138

    Article  PubMed Central  PubMed  Google Scholar 

  • Pilu R et al (2009) A paramutation phenomenon is involved in the genetics of maize low phytic acid1-241 (lpa1-241) trait. Heredity (edinb) 102(3):236–245

    Article  CAS  PubMed  Google Scholar 

  • Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11(11):745–760

    Article  CAS  PubMed  Google Scholar 

  • Quadrana L et al (2014) Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun 5:3027

    Article  CAS  ADS  PubMed  Google Scholar 

  • Raja P et al (2008) Viral genome methylation as an epigenetic defense against geminiviruses. J Virol 82(18):8997–9007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rambani A et al (2015) The methylome of soybean roots during the compatible interaction with the soybean cyst Nematode. Plant Physiol 168(4):1364–1377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramirez-Prado JS et al (2018) Plant immunity: from signaling to epigenetic control of defense. Trends Plant Sci 23(9):833–844

    Article  CAS  PubMed  Google Scholar 

  • Rea M et al (2012) Histone H1 affects gene imprinting and DNA methylation in Arabidopsis. Plant J 71(5):776–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Regulski M et al (2013) The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res 23(10):1651–1662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds M et al (2020) Breeder friendly phenotyping. Plant Sci 295:110396

    Article  CAS  PubMed  Google Scholar 

  • Richard MMS et al (2018a) Molecular mechanisms that limit the costs of NLR-mediated resistance in plants. Mol Plant Pathol 19(11):2516–2523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richard MMS et al (2018b) Genomic and epigenomic immunity in common bean: the unusual features of NB-LRR gene family. DNA Res 25(2):161–172

    Article  CAS  PubMed  Google Scholar 

  • Rizzo DM et al (2021) Plant health and its effects on food safety and security in a One Health framework: four case studies. One Health Outlook 3:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Roca Paixão JF et al (2019) Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone Acetyl Transferase. Sci Rep 9(1):8080

    Article  PubMed Central  ADS  PubMed  Google Scholar 

  • Rodríguez López CM, Wilkinson MJ (2015) Epi-fingerprinting and epi-interventions for improved crop production and food quality. Front Plant Sci 6:397

    PubMed Central  PubMed  Google Scholar 

  • Roth BM et al (2004) Plant viral suppressors of RNA silencing. Virus Res 102(1):97–108

    Article  CAS  PubMed  Google Scholar 

  • Rutowicz K et al (2015) A specialized histone H1 Variant is required for adaptive responses to complex abiotic stress and related DNA methylation in Arabidopsis. Plant Physiol 169(3):2080–2101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rutowicz K et al (2019) Linker histones are fine-scale chromatin architects modulating developmental decisions in Arabidopsis. Genome Biol 20(1):157

    Article  PubMed Central  PubMed  Google Scholar 

  • Sadanandom A et al (2012) The ubiquitin-proteasome system: central modifier of plant signalling. New Phytol 196(1):13–28

    Article  CAS  PubMed  Google Scholar 

  • Saijo Y, Reimer-Michalski E-M (2013) Epigenetic control of plant immunity. Epigenetic Memory and Control in Plants, Springer, Berlin, pp 57–76

    Book  Google Scholar 

  • Saijo Y et al (2018) Pattern recognition receptors and signaling in plant–microbe interactions. Plant J 93(4):592–613

    Article  CAS  PubMed  Google Scholar 

  • Sampson C et al (2023) The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin Transl Med 13(3):e1204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sani E et al (2013) Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol 14(6):R59

    Article  PubMed Central  PubMed  Google Scholar 

  • Satish D et al (2021) The landscape of microRNAs in plant viral infections. Plant Gene 26:100293

    Article  CAS  Google Scholar 

  • Savary S et al (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3(3):430–439

    Article  PubMed  Google Scholar 

  • Scippa GS et al (2004) The histone-like protein H1-S and the response of tomato leaves to water deficit. J Exp Bot 55(394):99–109

    Article  CAS  PubMed  Google Scholar 

  • Selma S, Orzáez D (2021) Perspectives for epigenetic editing in crops. Transgenic Res 30(4):381–400

    Article  CAS  PubMed  Google Scholar 

  • Sett S et al (2022) Resistance genes on the verge of plant–virus interaction. Trends Plant Sci 27(12):1242–1252

    Article  CAS  PubMed  Google Scholar 

  • Sheikh AH et al (2023) Linker histone H1 modulates defense priming and immunity in plants. Nucleic Acids Res 51(9):4252–4265

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Sheldon CC et al (2008) Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization. Proc Natl Acad Sci U S A 105(6):2214–2219

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Shin H et al (2022) Epigenome editing: targeted manipulation of epigenetic modifications in plants. Genes Genomics 44(3):307–315

    Article  CAS  PubMed  Google Scholar 

  • Sijen T et al (2001) Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol 11(6):436–440

    Article  CAS  PubMed  Google Scholar 

  • Singh P et al (2014) Environmental history modulates arabidopsis pattern-triggered immunity in a histone acetyltransferase1-dependent manner. Plant Cell 26(6):2676–2688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song XS et al (2018) Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing. Mol Plant Pathol 19(12):2543–2560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soosaar JLM et al (2005) Mechanisms of plant resistance to viruses. Nat Rev Microbiol 3(10):789–798

    Article  CAS  PubMed  Google Scholar 

  • Soppe WJ et al (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6(4):791–802

    Article  CAS  PubMed  Google Scholar 

  • Sørensen MB (1992) Methylation of B-hordein genes in barley endosperm is inversely correlated with gene activity and affected by the regulatory gene Lys3. Proc Natl Acad Sci U S A 89(9):4119–4123

    Article  PubMed Central  ADS  PubMed  Google Scholar 

  • Springer NM, Schmitz RJ (2017) Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet 18(9):563–575

    Article  CAS  PubMed  Google Scholar 

  • Sun H et al (2014) DNA methylation pattern of Photoperiod-B1 is associated with photoperiod insensitivity in wheat (Triticum aestivum). New Phytol 204(3):682–692

    Article  CAS  PubMed  Google Scholar 

  • Sun YW et al (2015) Attenuation of histone methyltransferase KRYPTONITE-mediated transcriptional gene silencing by Geminivirus. Sci Rep 5:16476

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Sun C et al (2021) Exploration of epigenetics for improvement of drought and other stress resistance in crops: a review. Plants (basel) 10(6):1226

    Article  CAS  PubMed  Google Scholar 

  • Taliansky M et al (2021) RNA-based technologies for engineering plant virus resistance. Plants (basel) 10(1):82

    Article  CAS  PubMed  Google Scholar 

  • Tang G et al (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17(1):49–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Telias A et al (2011) Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biol 11:93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tirnaz S, Batley J (2019a) DNA methylation: toward crop disease resistance improvement. Trends Plant Sci 24(12):1137–1150

    Article  CAS  PubMed  Google Scholar 

  • Tirnaz S, Batley J (2019b) Epigenetics: potentials and challenges in crop breeding. Mol Plant 12(10):1309–1311

    Article  CAS  PubMed  Google Scholar 

  • Tricker PJ et al (2013) Transgenerational, dynamic methylation of stomata genes in response to low relative humidity. Int J Mol Sci 14(4):6674–6689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tronick E, Hunter RG (2016) Waddington, dynamic systems, and epigenetics. Front Behav Neurosci 10:107

    Article  PubMed Central  PubMed  Google Scholar 

  • van Holde K, Zlatanova J (2007) Chromatin fiber structure: Where is the problem now? Semin Cell Dev Biol 18(5):651–658

    Article  PubMed  Google Scholar 

  • Varotto S et al (2020) Epigenetics: possible applications in climate-smart crop breeding. J Exp Bot 71(17):5223–5236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Veley KM et al (2022) Improving disease resistance in plants by editing the epigenome. Nat Commun 14:85

    Article  ADS  Google Scholar 

  • Walker EL et al (1995) Transposon-mediated chromosomal rearrangements and gene duplications in the formation of the maize R-r complex. EMBO J 14(10):2350–2363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walley JW et al (2008) The chromatin remodeler SPLAYED regulates specific stress signaling pathways. PLoS Pathog 4(12):e1000237

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang C et al (2010) Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant Cell Physiol 51(8):1291–1299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang MB et al (2012) RNA silencing and plant viral diseases. Mol Plant Microbe Interact 25(10):1275–1285

    Article  CAS  PubMed  Google Scholar 

  • Wang W et al (2014) Overexpression of Camellia sinensis H1 histone gene confers abiotic stress tolerance in transgenic tobacco. Plant Cell Rep 33(11):1829–1841

    Article  CAS  PubMed  Google Scholar 

  • Wang H et al (2015) CG gene body DNA methylation changes and evolution of duplicated genes in cassava. Proc Natl Acad Sci U S A 112(44):13729–13734

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Wang C et al (2017a) A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New Phytol 215(4):1503–1515

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2017b) Gene-body CG methylation and divergent expression of duplicate genes in rice. Sci Rep 7(1):2675

    Article  PubMed Central  ADS  PubMed  Google Scholar 

  • Wang Y et al (2017c) Histone deacetylase 6 6 represses pathogen defence responses in Arabidopsis thaliana. Plant Cell Environ 40(12):2972–2986

    Article  CAS  PubMed  Google Scholar 

  • Wang C et al (2018) Epigenetic changes in the regulation of Nicotiana tabacum response to cucumber mosaic virus infection and symptom recovery through single-base resolution methylomes. Viruses 10(8):402

    Article  PubMed Central  PubMed  Google Scholar 

  • Waryah CB et al (2018) Zinc fingers, TALEs, and CRISPR systems: a comparison of tools for epigenome editing. Methods Mol Biol 1767:19–63

    Article  CAS  PubMed  Google Scholar 

  • Wei T, O’Connell MA (1996) Structure and characterization of a putative drought-inducible H1 histone gene. Plant Mol Biol 30(2):255–268

    Article  CAS  PubMed  Google Scholar 

  • Wei X et al (2017) An epiallele of rice AK1 affects photosynthetic capacity. J Integr Plant Biol 59(3):158–163

    Article  CAS  MathSciNet  PubMed  Google Scholar 

  • Weigel D, Colot V (2012) Epialleles in plant evolution. Genome Biol 13(10):249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wen S et al (2012) Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health. Proc Natl Acad Sci U S A 109(50):20543–20548

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Wierzbicki AT, Jerzmanowski A (2005) Suppression of histone H1 genes in Arabidopsis results in heritable developmental defects and stochastic changes in DNA methylation. Genetics 169(2):997–1008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willcockson MA et al (2021) H1 histones control the epigenetic landscape by local chromatin compaction. Nature 589(7841):293–298

    Article  CAS  ADS  PubMed  Google Scholar 

  • Xu L et al (2009) The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. Plant J 57(2):279–288

    Article  CAS  PubMed  Google Scholar 

  • Yang SM et al (2013) H1 linker histone promotes epigenetic silencing by regulating both DNA methylation and histone H3 methylation. Proc Natl Acad Sci USA 110(5):1708–1713

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Yang L et al (2015) Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids. Nat Commun 6:7309

    Article  CAS  ADS  PubMed  Google Scholar 

  • Yang X et al (2019) Downregulation of nuclear protein h2b induces salicylic acid mediated defense against PVX infection in Nicotiana benthamiana. Front Microbiol 10:1000

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang L et al (2020) HOS15 and HDA9 negatively regulate immunity through histone deacetylation of intracellular immune receptor NLR genes in Arabidopsis. New Phytol 226(2):507–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • You W et al (2012) Atypical DNA methylation of genes encoding cysteine-rich peptides in Arabidopsis thaliana. BMC Plant Biol 12:51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu A et al (2013) Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci U S A 110(6):2389–2394

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Zarreen F et al (2022) The diverse roles of histone 2B monoubiquitination in the life of plants. J Exp Bot 73(12):3854–3865

    Article  CAS  PubMed  Google Scholar 

  • Zeng C et al (2022) Global dynamics of a new huanglongbing transmission model with quarantine measures. J Appl Math Phys 10(2):360–371

    Article  Google Scholar 

  • Zhang X et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126(6):1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhang L et al (2012) Identification and characterization of an epi-allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice. Plant Cell 24(11):4407–4421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang YY et al (2013) Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol 197(1):314–322

    Article  CAS  MathSciNet  PubMed  Google Scholar 

  • Zhang Y et al (2015) Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. BMC Plant Biol 15:1–20

    Article  Google Scholar 

  • Zhang X et al (2015) Epigenetic mutation of RAV6 affects leaf angle and seed size in rice. Plant Physiol 169(3):2118–2128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H et al (2018) Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol 19(8):489–506

    Article  CAS  PubMed  Google Scholar 

  • Zhi P, Chang C (2021) Exploiting epigenetic variations for crop disease resistance improvement. Front Plant Sci 12:692328

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhong S et al (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 31(2):154–159

    Article  CAS  PubMed  Google Scholar 

  • Zhu QH et al (2016) Epigenetic mechanisms: an emerging player in plant–microbe interactions. Mol Plant Microbe Interact 29(3):187–196

    Article  CAS  PubMed  Google Scholar 

  • Zilberman D et al (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39(1):61–69

    Article  CAS  MathSciNet  PubMed  Google Scholar 

  • Zipfel C, Robatzek S (2010) Pathogen-associated molecular pattern-triggered immunity: veni, vidi...? Plant Physiol 154(2):551–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zlatanova J (1990) Histone H1 and the regulation of transcription of eukaryotic genes. Trends Biochem Sci 15(7):273–276

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Innocent Uzochukwu Okagu or Chuks Kenneth Odoh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampson, C., Ikenwugwu, T.H., Okagu, I.U. et al. Epigenetics: Toward improving crop disease resistance and agronomic characteristics. Plant Biotechnol Rep 18, 1–20 (2024). https://doi.org/10.1007/s11816-023-00876-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-023-00876-z

Keywords

Navigation