Skip to main content

Advertisement

Log in

Putative E3 ligases as candidates controlling BRASSINOSTEROID INSENSITIVE 2 (BIN2) kinase in Arabidopsis

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The Glycogen synthase kinase 3 (GSK3)-like kinase BRASSINOSTEROID-INSENSITIVE2 (BIN2), a major negative regulator in the Brassinosteroids (BRs) signaling, is involved in a variety of plant signaling pathways by interacting with novel substrates and plays a major role in cellular, growth and developmental regulation. Despite BIN2 functional studies including BR signaling related proteasome-mediated BIN2 degradation, the molecular regulating mechanisms and it’s related the protein component for regulating BIN2 degradation has not been completely known. This study aimed to i) identify BIN2 protein and its interacting partner from HA-Immunoprecipitation (IP) of the BL-treated BIN2-HA and bin2-6D-HA lines, using liquid chromatography tandem mass spectrometry (LC–MS/MS) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI–TOF/TOF MS) and ii) characterize relationships between BIN2 and interacting partner proteins. We generated transgenic plants constitutively expressing BIN2-HA, bin2-6D (BIN2E264K)-HA, and BIN2KD (BIN2K69R)-HA construct. IP of the HA-tagged bin2-6D/BIN2 protein followed by mass spectrometry identified F-box protein, BRASSINOSTEROID F-BOX 1 (BRF1) and BRF2 containing the LRR and FBD domain, as interacting proteins with BIN2. Validation in vitro by yeast two-hybrid analyses further confirmed the interacting protein. These results, together with phylogeny and sequence alignments of BRF1 and BRF2 homologs multiple methods, suggest that f-box protein BRF1 and BRF2 play redundant or overlapping roles in regulating BIN2. It is likely that the BIN2 protein stability is controlled by BRF1 and BRF2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Abbreviations

ASK:

ARABIDOPSIS SKP1-LIKE

BES1:

BRI1-EMS-SUPPRESSOR1

BIN2:

BRASSINOSTEROID INSENSITIVE 2

BL:

Brassinolide

BR:

Brassinosteroid

BRF1:

BRASSINOSTEROID F-BOX 1

BRF2:

BRASSINOSTEROID F-BOX 2

BRI1:

BRASSINOSTEROID INSENSITIVE 1

BRZ:

Brassinazole

BSK1:

BR-SIGNALING KINASE 1

BSU1:

BRI1 SUPPRESSOR 1

BZR1:

BRASSINAZOLE-RESISTANT1

COI1:

CORONATINE INSENSITIVE 1

EBF1/2:

EIN3 BINDINGF-BOX PROTEIN 1/2

EIN3:

ETHYLENE-INSENSITIVE 3

GSK:

Glycogen synthase kinase 3/SHAGGY-like kinase

GSK3β:

Glycogen synthase kinase 3β

HA:

Hemagglutinin

IP:

Immunoprecipitation

JAZ:

JASMONATEZIM DOMAIN

LC–MS/MS:

Liquid chromatography tandem mass spectrometry

LRR:

Leucine-rich repeat

MALDI–TOF/TOF MS:

Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry

MAX2:

MORE AXILLARY GROWTH 2

MS:

Murashige and Skoog

MyRF:

Myelin regulatory factor

PP2A:

Protein phosphatase 2A

PSA:

Pairwise sequence alignment

SCF:

Skp1/Cullin1/F-box protein

TIR1:

TRANSPORT INHIBITOR RESPONSE 1

TLR:

Toll-like receptor

TRAF6:

Tumor necrosis factor receptor-associated factor 6

β-TrCP:

β-Transducin repeat-containing protein

YFP:

Yellow fluorescent protein

References

  • Ali A, Hoeflich KP, Woodgett JR (2001) Glycogen synthase kinase-3: properties, functions, and regulation. Chem Rev 101(8):2527–2540

    Article  CAS  PubMed  Google Scholar 

  • Bijur GN, Jope RS (2001) Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3 beta. J Biol Chem 276(40):37436–37442

    Article  CAS  PubMed  Google Scholar 

  • Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE (2002) Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3 beta-like kinase. Plant Physiol 130(3):1506–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated in to the MaxQuant environment. J Proteome Res 10(4):1794–1805

    Article  CAS  PubMed  Google Scholar 

  • Drewes G, Bouwmeester T (2003) Global approaches to protein-protein interactions. Curr Opin Cell Biol 15(2):199–205

    Article  CAS  PubMed  Google Scholar 

  • Dunn WB, Broadhurst D, Brown M, Baker PN, Redman CWG, Kenny LC, Kell DB (2008) Metabolic profiling of serum using ultra performance liquid chromatography and the LTQ-Orbitrap mass spectrometry system. J Chromatogr B Anal Technol Biomed Life Sci 871(2):288–298

    Article  CAS  Google Scholar 

  • Failor KL, Desyatnikov Y, Finger LA, Firestone GL (2007) Glucocorticoid-induced degradation of GSK3 protein is triggered by Sgk and Akt signaling and controls beta-catenin dynamics and tight junction formation in mammary epithelial tumor cells. Mol Endocrinol 21(10):2403–2415

    Article  CAS  PubMed  Google Scholar 

  • Gagne JM, Downes BP, Shiu SH, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA 99(17):11519–11524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao C, Chen G, Romero G, Moschos S, Xu X, Hu J (2014) Induction of Gsk3β-β-TrCP interaction is required for late phase stabilization of beta-catenin in canonical Wnt signaling. J Biol Chem 289(10):7099–7108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:601–605

    Article  CAS  PubMed  Google Scholar 

  • Ho MS, Ou C, Chan YR, Chien CT, Pi H (2008) The utility F-box for protein destruction. Cell Mol Life Sci 65(13):1977–2000

    Article  CAS  PubMed  Google Scholar 

  • Hoffmeister L, Diekmann M, Brand K, Huber R (2020) GSK3: a kinase balancing promotion and resolution of inflammation. Cells 9(4):820

    Article  PubMed Central  Google Scholar 

  • Hur EM, Zhou FQ (2010) GSK3 signaling in neural development. Nat Rev Neurol 11(8):539–551

    Article  CAS  Google Scholar 

  • Ko R, Park JH, Ha H, Choi Y, Lee SY (2015) Glycogen synthase kinase 3β ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat Commun 6:6765

    Article  CAS  PubMed  Google Scholar 

  • Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11(6):725–732

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Lee MJ (2012) Emerging roles of the ubiquitin-proteasome system in the steroid receptor signaling. Arch Pharm Res 35(3):397–407

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Eisenman RN (2012) Regulation of c-Myc protein abundance by a protein phosphatase 2A–Glycogen synthase kinase 3β–negative feedback pathway. Genes Cancer 3(1):23–36

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Cobb JS, Johnson JL, Wang Q, Agar JN (2014) Performance comparisons of nano-LC systems, electrospray sources and LC-MS-MS platforms. J Chromatogr Sci 52(2):120–127

    Article  CAS  PubMed  Google Scholar 

  • Mazzucotelli E, Belloni S, Marone D, De Leonardis A, Guerra D, Di Fonzo N, Cattivelli L, Mastrangelo A (2006) The e3 ubiquitin ligase gene family in plants: regulation by degradation. Curr Genomics 7(8):509–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miricescu A, Goslin K, Graciet E (2018) Ubiquitylation in plants: signaling hub for the integration of environmental signals. J Exp Bot 69(19):4511–4527

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj N, D’Souza RCJ, Cox J, Olsen JV, Mann M (2010) Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation. J Proteome Res 9(12):6786–6794

    Article  CAS  PubMed  Google Scholar 

  • Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y (2020) Brassinosteroids: multidimensional regulators of plant growth development, and stress responses. Plant Cell 32(2):295–318

    Article  CAS  PubMed  Google Scholar 

  • Olsen JV, Schwartz JC, Griep-Raming J, Nielsen ML, Damoc E, Denisov E, Lange O, Remes P, Taylor D, Splendore M, Wouters ER, Senko M, Makarov A, Mann M, Horning S (2009) A dual pressure linear ion trap-Orbitrap instrument with very high sequencing speed. Mol Cell Proteomics 8(12):2759–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng P, Yan Z, Zhu Y, Li J (2008) Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 through proteasome-mediated protein degradation. Mol Plant 1(2):338–346

    Article  CAS  PubMed  Google Scholar 

  • Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, Caño-Delgado AI (2019) Brassinosteroid signaling in plant development and adaptation to stress. Dev 146(5):dev151894

    Article  Google Scholar 

  • Richert S, Luche S, Chevallet M, Van Dorsselaer A, Leize-Wagner E, Rabilloud T (2004) About the mechanism of interference of silver staining with peptide mass spectrometry. Proteomics 4(4):909–916

    Article  CAS  PubMed  Google Scholar 

  • Sharma B, Joshi D, Yadav PK, Gupta AK, Bhatt TK (2016) Role of ubiquitin-mediated degradation system in plant biology. Front Plant Sci 7:806

    PubMed  PubMed Central  Google Scholar 

  • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860

    Article  CAS  PubMed  Google Scholar 

  • Song L, Luo ZQ (2019) Post-translational regulation of ubiquitin signaling. J Cell Biol 218(6):1776–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Wang X (2018) GSK3-like kinases are a class of positive components in the core ABA signaling pathway. Mol Plant 11(6):761–763

    Article  CAS  PubMed  Google Scholar 

  • Xiao W, Jang J (2000) F-box proteins in Arabidopsis. Trends Plant Sci 5(11):454–457

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xu XJ, Xu W, Huang J, Zhu DY, Qiu XH (2015) Rapid characterization and identification of flavonoids in Radix astragali by ultra-high-pressure liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry. J Chromatogr Sci 53(6):945–952

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Tian Z, Li H, Guo Y, Zhang Y, Roberts JA, Zhang X, Miao Y (2019) Genome-wide analysis and characterization of F-box gene family in Gossypium hirsutum L. BMC Genom 20(1):993

    Article  CAS  Google Scholar 

  • Zhou Z, He C, Wang J (2015) Regulation mechanism of Fbxw7-related signaling pathways (Review). Oncol Rep 34(5):2215–2224

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank MS. Lee of the National Center for Inter-university Research Facilities (NCIRF) for assistance with the LC-MS experiments. This work was done with the financial assistance of Pro. Sunghwa Choe and grants from the National Research Foundation of Korea (NRF; Grant No. 2013R1A1A2059445 to Y.J.J).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jeong Jeong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11816_2020_646_MOESM1_ESM.jpg

Supplementary file1 Fig S1. Identification of the BIN2 protein determined by LC-MS/MS analysis.a. Mass spectrum obtained from a doubly charged ion with monoisotopic m/z=538.8+2 (corresponding to LLQYSPSLR), m/z=617.3+2 (corresponding to MPPEAIDFASR), m/z=679.3+2 (corresponding to QEVAGSSPELVNK), m/z=617.3+2 (corresponding to VLGTPTREEIR), m/z=434.9+2 (corresponding to VLKHYSSANQR), and m/z=705.4+2 (corresponding to VVGTGSFGIVFQAK), present in protein band 1 in Fig. 2a. b. Peptide identification by LC-MS/MS analysis. * m/z: mass to charge ratio; MC #: miscleaved trypsin; RT: retention time on reverse phase C18 column; z: multiple charge number. c. The amino acid sequences of the identified Arabidopsis BIN2 protein. The peptides determined by MS/MS analysis are shown in red. (JPG 309 KB)

11816_2020_646_MOESM2_ESM.xlsx

Supplementary file2 Table S1. Pairwise alignment score list of the entire amino acid and nucleotide sequences of the Arabidopsis BRF1 and BRF2 homologs, determined using BLAST.(XLSX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, Y.J. Putative E3 ligases as candidates controlling BRASSINOSTEROID INSENSITIVE 2 (BIN2) kinase in Arabidopsis. Plant Biotechnol Rep 14, 703–712 (2020). https://doi.org/10.1007/s11816-020-00646-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-020-00646-1

Keywords

Navigation