Skip to main content
Log in

Transgenic Arabidopsis plants expressing CsBCATs affect seed germination under abiotic stress conditions

  • Short Communication
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

We investigated the responses of transgenic Arabidopsis plants that express cucumber branched-chain aminotransferases (CsBCATs) under abiotic or biotic stresses. The expression of CsBCAT3 and CsBCAT7 was dramatically increased by various abiotic treatments. The germination of CsBCAT3- or CsBCAT7-expressing Arabidopsis seeds was increased under salt and dehydration treatments, which was correlated with the increased or decreased expression levels of the germination-responsive genes. Although salicylic acid and jasmonic acid increased CsBCAT2 or CsBCAT7 expression, transgenic Arabidopsis plants that express CsBCAT2 or CsBCAT7 did not show the disease resistance to bacteria or fungus. Our results indicate that the CsBCATs affect seed germination of plants under abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Angelovici R, Lipka AE, Deason N, Gonzalez-Jorge S, Lin H, Cepela J, Buell R, Gore MA, Dellapenna D (2013) Genome-wide analysis of branched-chain amino acid levels in Arabidopsis seeds. Plant Cell 25:4827–4843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder S, Knill T, Schuster J (2007) Branched-chain amino acid metabolism in higher plants. Physiol Plant 129:68–78

    Article  CAS  Google Scholar 

  • Boualem A, Fleurier S, Troadec C, Audigier P, Kumar AP, Chatterjee M, Alsadon AA, Sadder MT, Wahb-Allah MA et al (2014) Development of a Cucumis sativus TILLinG platform for forward and reverse genetics. PLoS One 9:e97963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell MA, Patel JK, Meyers JL, Myrick LC, Gustin JL (2001) Genes encoding for branched-chain amino acid aminotransferases are differentially expressed in plants. Plant Physiol Biochem 39:855–860

    Article  CAS  Google Scholar 

  • Diebold R, Schuster J, Daschner K, Binder S (2002) The branched-chain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins. Plant Physiol 129:540–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding G, Che P, Ilarslan H, Wurtele ES, Nikolau BJ (2012) Genetic dissection of methylcrotonyl CoA carboxylase indicates a complex role for mitochondrial leucine catabolism during seed development and germination. Plant J 70:562–577

    Article  CAS  PubMed  Google Scholar 

  • Eden A, Benvenisty N (1998) Characterization of a branched-chain amino-acid aminotransferase from Schizosaccharomyces pombe. Yeast 14:189–194

    Article  CAS  PubMed  Google Scholar 

  • Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt TM, Nunes Nesi A, Araujo WL, Braun HP (2015) Amino acid catabolism in plants. Mol Plant 8:1563–1579

    Article  CAS  PubMed  Google Scholar 

  • Hong SM, Bahn SC, Lyu A, Jung HS, Ahn JH (2010) Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis. Plant Cell Physiol 51:1606–1694

    Article  CAS  Google Scholar 

  • Joshi V, Joung JG, Fei Z, Jander G (2010) Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 39:933–947

    Article  CAS  PubMed  Google Scholar 

  • Kochevenko A, Klee HJ, Fernie AR, Araujo WL (2012) Molecular identification of a further branched-chain aminotransferase 7 (BCAT7) in tomato plants. J Plant Physiol 169:437–443

    Article  CAS  PubMed  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Hong JK (2015) Differential defence responses of susceptible and resistant kimchi cabbage cultivars to anthracnose, black spot and black rot diseases. Plant Pathol 64:406–415

    Article  CAS  Google Scholar 

  • Lee YH, Kim SH, Yun BW, Hong JK (2014) Altered cultivar resistance of kimchi cabbage seedlings mediated by salicylic acid, jasmonic acid and ethylene. Plant Pathol J 30:323–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Kim YC, Jung Y, Han JH, Zhang C, Yun CW, Lee S (2019) The overexpression of cucumber (Cucumis sativus L.) genes that encode the branched-chain amino acid transferase modulate flowering time in Arabidopsis thaliana. Plant Cell Rep 38:25–35

    Article  CAS  PubMed  Google Scholar 

  • Malatrasi M, Corradi M, Svensson JT, Close TJ, Gulli M, Marmiroli N (2006) A branched-chain amino acid aminotransferase gene isolated from Hordeum vulgare is differentially regulated by drought stress. Theor Appl Genet 113:965–976

    Article  CAS  PubMed  Google Scholar 

  • Maloney GS, Kochevenko A, Tieman DM, Tohge T, Krieger U, Zamir D, Taylor MG, Fernie AR, Klee HJ (2010) Characterization of the branched-chain amino acid aminotransferase enzyme family in tomato. Plant Physiol 153:925–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuda N, Ohme-Takagi M (2009) Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiol 50:1232–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarova H, Bernsdorff F, Doring AC, Zeier J (2012) Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123–5141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng C, Uygun S, Shiu SH, Last RL (2015) The impact of the branched-chain dehydrogenase complex on amino acid homeostasis in Arabidopsis. Pnat Physiol 169:1807–1820

    CAS  Google Scholar 

  • Schuster J, Binder S (2005) The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana. Plant Mol Biol 57:241–254

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Shaner DL (1995) Biosynthesis of branched chain amino acids: from test tube to field. Plant Cell 7:935–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor NL, Heazlewood JL, Day DA, Millar AH (2004) Lipoic acid-dependent oxidative catabolism of alpha-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis. Plant Physiol 134:838–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel-Adghough D, Stahl E, Navarova H, Zeier J (2013) Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco. Plant Signal Behav 8:e26366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Saint Paul V, Zhang W, Kanawati B, Geist B, Faus-Kessler T, Schmitt-Kopplin P, Schaffner AR (2011) The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. Plant Cell 23:4124–4145

    Article  CAS  Google Scholar 

  • Warzybok A, Migocka M (2013) Reliable reference genes for normalization of gene expression in cucumber grown under different nitrogen nutrition. PLoS One 8:e72887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Win KT, Zhang C, Song K, Lee JH, Lee S (2015) Development and characterization of a co-dominant molecular marker via sequence analysis of a genomic region containing the Female (F) locus in cucumber (Cucumis sativus L.). Mol Breed 35:229-

    Article  CAS  Google Scholar 

  • Yamaguchi S, Smith MW, Brown RG, Kamiya Y, Sun T (1998) Phytochrome regulation and differential expression of gibberellin 3beta-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10:2115–2126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XY, Jiang WJ, Yu HJ (2012) The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.). Int J Mol Sci 13:2481–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Research Foundation of Korea, and the Next-Generation BioGreen 21 Program (Plant Molecular Breeding Center No. PJ01329601) of the Rural Development Administration, Republic of Korea. We wish to express our gratitude towards Youjin Jung, Daeun Choi, and Kwanuk Lee for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyeob Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3384 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Han, J.H., Kim, YC. et al. Transgenic Arabidopsis plants expressing CsBCATs affect seed germination under abiotic stress conditions. Plant Biotechnol Rep 13, 95–101 (2019). https://doi.org/10.1007/s11816-019-00515-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-019-00515-6

Keywords

Navigation