Skip to main content
Log in

Optimization of Agrobacterium-mediated transient expression of heterologous genes in spinach

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The Agrobacterium-mediated transient assay is a relatively rapid technique and a promising approach for assessing the expression of a gene of interest. Despite the successful application of this transient expression system in several plant species, it is not well understood in spinach. In this study, we analyzed various factors, including infiltration method, Agrobacterium strain and density, and co-infiltration of an RNA silencing suppressor (p19), that affect transient expression following agroinfiltration in spinach. To evaluate the effects of these factors on the transient expression system, we used the β-glucuronidase (GUS) reporter gene construct pB7WG2D as a positive control. The vacuum-based infiltration method was much more effective at GUS gene expression than was the syringe-based infiltration method. Among the three Agrobacterium strains examined (EHA105, LBA4404, and GV2260), infiltration with the GV2260 strain suspension at a final optical cell density (OD600) of 1.0 resulted in the highest gene expression. Furthermore, co-expression of suppressor p19 also increased the efficiency and duration of gene expression and protein accumulation. The results indicate that the use of optimized conditions for transient gene expression could be a simple, rapid, and effective tool for functional genomics in spinach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson AR, Moore LW (1979) Host specificity in the genus Agrobacterium. Phytopathology 69(4):320–323

    Article  Google Scholar 

  • Avsar B, Aliabadi DE (2017) In silico analysis of microRNAs in Spinacia oleracea genome and transcriptome. Int J Biosci Biochem Bioinform 7(2):84–92

    Google Scholar 

  • Bakrim A, Maria A, Sayah F, Lafont R, Takvorian N (2008) Ecdysteroids in spinach (Spinacia oleracea L.): biosynthesis, transport and regulation of levels. Plant Physiol Biochem 46(10):844–854

    Article  CAS  PubMed  Google Scholar 

  • Bashandy H, Jalkanen S, Teeri TH (2015) Within leaf variation is the largest source of variation in agroinfiltration of Nicotiana benthamiana. Plant Methods 11(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  • Chin DP, Bao JH, Mii M (2009) Transgenic spinach plants produced by Agrobacterium-mediated method based on the low temperature-dependent high plant regeneration ability of leaf explants. Plant Biotechnol 26(2):243–248

    Article  CAS  Google Scholar 

  • Choi MS, Yoon IS, Rhee Y, Choi SK, Lim SH, Won SY, Lee YH, Choi HS, Lee SC, Kim KH, Lomonossoff G, Sohn SH (2008) The effect of Cucumber mosaic virus 2b protein to transient expression and transgene silencing mediated by agro-infiltration. Plant Pathol J 24(3):296–304

    Article  CAS  Google Scholar 

  • DeCleene M, DeLey J (1976) The host range of crown gall. Bot Rev 42(4):389–466

    Article  Google Scholar 

  • Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R et al (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505(7484):546–549

    Article  CAS  PubMed  Google Scholar 

  • Gil MI, Ferreres F, Tomás-Barberán FA (1999) Effect of postharvest storage and processing on the antioxidant constituents (flavonoids and vitamin C) of fresh-cut spinach. J Agric Food Chem 47(6):2213–2217

    Article  CAS  PubMed  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection—a new platform for expressing recombinant vaccines in plants. Vaccine 23(17):2042–2048

    Article  CAS  PubMed  Google Scholar 

  • Grebenok RJ, Adler JH (1993) Ecdysteroid biosynthesis during the ontogeny of spinach leaves. Phytochemistry 33(2):341–347

    Article  CAS  Google Scholar 

  • Habibi M, Malekzadeh-Shafaroudi S, Marashi H, Moshtaghi N, Nasiri M, Zibaee S (2014) The transient expression of coat protein of foot and mouth disease virus (FMDV) in spinach (Spinacia oleracea) using agroinfiltration. J Plant Mol Breed 2(2):18–27

    Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286(5441):950–952

    Article  CAS  PubMed  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418(6894):244–251

    Article  CAS  PubMed  Google Scholar 

  • Hedges LJ, Lister CE (2007) Nutritional attributes of spinach, silver beet and eggplant. Crop Food Res Confid Rep 1928:1–29

    Google Scholar 

  • Hellens R, Mullineaux P, Klee H (2000) Technical focus: a guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5(10):446–451

    Article  CAS  PubMed  Google Scholar 

  • Homrich MS, Wiebke-Strohm B, Weber RLM, Bodanese-Zanettini MH (2012) Soybean genetic transformation: a valuable tool for the functional study of genes and the production of agronomically improved plants. Genet Mol Biol 35(4):998–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosein FN, Lennon AM, Umaharan P (2012) Optimization of an Agrobacterium-mediated transient assay for gene expression studies in Anthurium andraeanum. J Am Soc Hortic Sci 137(4):263–272

    CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen LK, Carrington JC (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 126(3):930–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson ON, Nilsson AK, Nilsson AK, Gustavsson MB, Backhaus T, Andersson MX, Ellerström M (2015) A quick and robust method for quantification of the hypersensitive response in plants. PeerJ 3:e1469

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapila J, DeRycke R, Montagu MV, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122(1):101–108

    Article  CAS  Google Scholar 

  • Kathuria S, Sriraman R, Nath R, Sack M, Pal R, Artsaenko O, Talwar GP, Fischer R, Finnern R (2002) Efficacy of plant-produced recombinant antibodies against HCG. Hum Reprod 17(8):2054–2061

    Article  CAS  PubMed  Google Scholar 

  • Lakatos L, Szittya G, Silhavy D, Burgyán J (2004) Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J 23(4):876–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naim F, Shrestha P, Singh SP, Waterhouse PM, Wood CC (2015) Stable expression of silencing-suppressor protein enhances the performance and longevity of an engineered metabolic pathway. Plant Biotechnol J 14:1418–1426

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen QV, Boo KH, Sun HJ, Cao DV, Lee D, Ko SH, Kang S, Yoon S, Kim SC, Park SP, Riu KZ, Lee DS (2013) Evaluation of factors influencing Agrobacterium-mediated spinach transformation and transformant selection by EGFP fluorescence under low-selective pressure. Vitro Cell Dev Biol Plant 49(5):498–509

    Article  CAS  Google Scholar 

  • Orzaez D, Mirabel S, Wieland WH, Granell A (2006) Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol 140(1):3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez M, Ramírez NI, Ayala M, Freyre F, Pérez L, Triguero A, Mateo C, Selman-Housein G, Gavilondo JV, Pujol M (2005) Transient expression in tobacco leaves of an aglycosylated recombinant antibody against the epidermal growth factor receptor. Biotechnol Bioeng 89(2):188–194

    Article  PubMed  Google Scholar 

  • Rothová O, Holá D, Kočová M, Tůmová L, Hnilička F, Hniličková H, Kamlar M, Macek T (2014) 24-Epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach. Steroids 85:44–57

    Article  PubMed  Google Scholar 

  • Schmelz EA, Grebenok RJ, Galbraith DW, Bowers WS (1999) Insect-induced synthesis of phytoecdysteroids in spinach, Spinacia oleracea. J Chem Ecol 25(8):1739–1757

    Article  CAS  Google Scholar 

  • Schmelz EA, Grebenok RJ, Ohnmeiss TE, Bowers WS (2002) Interactions between Spinacia oleracea and Bradysia impatiens: a role for phytoecdysteroids. Arch Insect Biochem Physiol 51(4):204–221

    Article  CAS  PubMed  Google Scholar 

  • Shamloul M, Trusa J, Mett V, Yusibov V (2014) Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana. J Vis Exp 86:e51204–e51204

    Google Scholar 

  • Sohn SH, Huh SM, Kim KH, Park JW, Lomonossoff G (2011) Effect of Rice stripe virus NS3 on transient gene expression and transgene co-silencing. Plant Pathol J 27(4):310–314

    Article  CAS  Google Scholar 

  • Sriraman R, Bardor M, Sack M, Vaquero C, Faye L, Fischer R, Finnern R, Lerouge P (2004) Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core-α (1,3)-fucose residues. Plant Biotechnol J 2(4):279–287

    Article  CAS  PubMed  Google Scholar 

  • Surekha C, Arundhati A, Rao GS (2007) Differential response of Cajanus cajan varieties to transformation with different strains of Agrobacterium. J Biol Sci 7(1):176–181

    Article  CAS  Google Scholar 

  • Vaquero C, Sack M, Chandler J, Drossard J, Schuster F, Monecke M, Schillberg S, Fischer R (1999) Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proc Natl Acad Sci USA 96(20):11128–11133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  CAS  PubMed  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3(2):259–273

    Article  CAS  PubMed  Google Scholar 

  • Wydro M, Kozubek E, Lehmann P (2006) Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochim Pol 53(2):289–298

    CAS  PubMed  Google Scholar 

  • Xu C, Jiao C, Zheng Y, Sun H, Liu W, Cai X, Wang X, Liu S, Xu Y, Mou B (2015) De novo and comparative transcriptome analysis of cultivated and wild spinach. Sci Rep 5:17706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav S, Sharma P, Srivastava A, Desai P, Shrivastava N (2014) Strain specific Agrobacterium-mediated genetic transformation of Bacopa monnieri. J Genet Eng Biotechnol 12(2):89–94

    Article  Google Scholar 

  • Yan J, Yu L, Xuan J, Lu Y, Lu S, Zhu W (2016) De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress. Sci Rep 6:1–10

    Article  Google Scholar 

  • Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22(6):543–551

    Article  CAS  PubMed  Google Scholar 

  • Zhang HX, Zeevaart J (1999) An efficient Agrobacterium tumefaciens-mediated transformation and regeneration system for cotyledons of spinach (Spinacia oleracea L.). Plant Cell Rep 18(7–8):640–645

    Article  CAS  Google Scholar 

  • Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299(5607):716–719

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was conducted with the support of the “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011289032017)”, the Rural Development Administration, the Republic of Korea and the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2016R1D1A1B02012307 and 2016R1A6A1A03012862).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Key-Zung Riu or Kyung-Hwan Boo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 591 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D.V., Pamplona, R.S., Kim, J. et al. Optimization of Agrobacterium-mediated transient expression of heterologous genes in spinach. Plant Biotechnol Rep 11, 397–405 (2017). https://doi.org/10.1007/s11816-017-0457-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-017-0457-4

Keywords

Navigation