Skip to main content
Log in

The rat glucocorticoid receptor integration in Nicotiana langsdorffii genome affects plant responses to abiotic stresses and to arbuscular mycorrhizal symbiosis

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The present study reports evidence of the pleiotropic effects caused by the insertion of the rat glucocorticoid receptor (GR) into the genome of Nicotiana langsdorffii. Transgenic N. langsdorffii-GR plants and the wild-type genotypes were analysed for their phenotypic and physiological characteristics. The integration of the GR gene affected flowering, growth habit, leaf morphology and stomatal pattern. Furthermore, GR plants showed an increased tolerance to heavy metal, drought and heat stress as evidenced by electrolyte leakage and by cell dedifferentiation and differentiation capability after recovery from stress treatments. We also monitored the establishment of the beneficial symbiosis between transgenic plants and the mycorrhizal fungus Funneliformis mosseae whose pre-symbiotic growth was significantly reduced by root exudates of N. langsdorffii-GR plants. The observed pleiotropic responses of transgenic plants may be a consequence of the hormonal imbalance, putatively due to the interaction of the GR receptor with the host genetic background. Our findings suggest that N. langsdorffii-GR plants can be used as a functional model system for the study of plant responses to a series of environmental stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akiyama K, Ken-ichi M, Hideo H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827. doi:10.1038/nature03608

    Article  CAS  PubMed  Google Scholar 

  • Aoyama T, Chua NH (1997) A glucocorticoid mediated transcriptional system in transgenic plants. Plant J 11(3):605–612. doi:10.1046/j.1365-313X.1997.11030605.x

    Article  CAS  PubMed  Google Scholar 

  • Arora R, Pitchay DS, Bearce BC (1998) Water-stress-induced heat tolerance in geranium leaf tissues: a possible linkage through stress proteins? Physiol Plant 103:24–34. doi:10.1034/j.1399-3054.1998.1030104.x

    Article  CAS  Google Scholar 

  • Bettini P, Michelotti S, Bindi D, Giannini R, Capuana M, Buiatti M (2003) Pleiotropic effect of the insertion of the Agrobacterium rhizogenes rol D gene in tomato (Lycopersicon esculentum Mill.). Theor Appl Genet 107(5):831–836

    Article  CAS  PubMed  Google Scholar 

  • Brockmann B, Smith MW, Zaraisky AG, Harrison K, Okada K, Kamiya Y (2001) Subcellular localization and targeting of glucocorticoid receptor protein fusions expressed in transgenic Arabidopsis thaliana. Plant Cell Physiol 42(9):942–951. doi:10.1093/pcp/pce120

    Article  CAS  PubMed  Google Scholar 

  • Cadepond F, Schweizer-Groyer G, Segard-Maurel I, Jibard N, Hollenberg SM, Giguere V, Evans RM, Baulieu EE (1991) Heatshock protein 90 as a critical factor in maintaining glucocorticosteroid receptor in a not functional state. J Biol Chem 266:5834–5841

    CAS  PubMed  Google Scholar 

  • Choudhary SP, Volkan H, Bhardwaj R, Yu J, Phan Tran LS (2012) Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63(15):5659–5675. doi:10.1093/jxb/ers219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dhaubhadel S, Browning KS, Gallie DR, Krishna P (2002) Brassinosteroids function to protect the translational machinery and heatshock protein synthesis following thermal stress. Plant J 29:681–691. doi:10.1046/j.1365-313X.2002.01257.x

    Article  CAS  PubMed  Google Scholar 

  • Doheny-Adams T, Hunt L, Franks PJ, Beerling DJ, Gray JE (2012) Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Phil Trans R Soc B 367:547–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foo E (2013) Auxin influences strigolactones in pea mycorrhizal symbiosis. J Plant Physiol 170:523–528. doi:10.1016/j.jplph.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  • Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17:464–474. doi:10.1105/tpc.104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foo E, Yoneyama K, Hugill C, Quittenden L, Reid JB (2013) Strigolactones: internal and external signals in plant symbioses? Plant Signal Behav 8:e23168.1–e23168.4. doi:10.4161/psb.23168

    Google Scholar 

  • Fuoco R, Bogani P, Capodaglio G, Del Bubba M, Abollino O, Giannarelli S, Spiriti MM, Muscatello B, Doumett S, Turetta C, Zangrando R, Zelano V, Buiatti M (2013) Response to metal stress of Nicotiana langsdorffii plants wild-type and transgenic for the rat glucocorticoid receptor gene. J Plant Physiol 170:668–675. doi:10.1016/j.jplph.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. T Brit Mycol Soc 46:235–246

    Article  Google Scholar 

  • Giannarelli S, Muscatello B, Bogani P, Spiriti MM, Buiatti M, Fuoco R (2010) Comparative determination of some phytohormones in wild-type and genetically modified plants by gas chromatography-mass spectrometry and high-performance liquid chromatography-tandem mass spectrometry. Anal Biochem 398:60–68. doi:10.1016/j.ab.2009.10.038

    Article  CAS  PubMed  Google Scholar 

  • Giguere V, Hollenberg SM, Rosenfeld MG, Evans RM (1986) Functional domains of the human glucocorticoid receptor. Cell 46:645–652

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. doi:10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol 125:587–594. doi:10.1111/j.1469-8137.1993.tb03907.x

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Citernesi AS, Avio L (1996) Analysis of factors involved in fungal recognition responses to host-derived signals by arbuscular mycorrhizal fungi. New Phytol 133(1):65–71. doi:10.1111/j.1469-8137.1996.tb04342.x

    Article  Google Scholar 

  • Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Iezzi A, Mignolli F, Picciarelli P, Pinto B, Reali D, Sbrana C, Scarpato R (2012) Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Br J Nutr 107:242–251. doi:10.1017/S000711451100290X

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194. doi:10.1038/nature07271

    Article  CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4. http://palaeoelectronica.org/2001_1/past/issue1_01.htm

  • Hanlon MT, Coenen C (2011) Genetic evidence for auxin involvement in arbuscular mycorrhizal initiation. New Phytol 189:701–709. doi:10.1111/j.1469-8137.2010.03567.x

    Article  PubMed  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochem 68:101–110. doi:10.1016/j.phytochem.2006.09.025

    Article  CAS  Google Scholar 

  • Irdani T, Caroppo S, Ambrogioni L (2003) Response of Nicotiana tabacum plants overexpressing a glucocorticoid receptor to Meloidogyne incognita (Nematoda Tylenchida) infestation. Redia LXXXVI:35–38

    Google Scholar 

  • Johnson X, Brcich T, Dun EA, Goussot M, Haurogné K, Beveridge CA, Rameau C (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol 42:1014–1026. doi:10.1104/pp.106.087676

    Article  Google Scholar 

  • Kanwar MK, Bhardwaj R, Arora P, Chowdhary SP, Sharma P, Kumar S (2012) Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere 86(1):41–49. doi:10.1016/j.chemosphere.2011.08.048

    Article  CAS  PubMed  Google Scholar 

  • Kim TW, Michniewicz M, Bergmann DC, Wang ZY (2012) Brassinosteroids regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482:419–424. doi:10.1038/nature10794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovacs JJ, Murphy PJM, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toff DO, Pratt WB, Yao TP (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18:601–607. doi:10.1016/j.molcel.2005.04.021

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Xu Z, He G, Yang G, Chen M, Li L, Ma Y (2012) A mutation in Arabidopsis BSK5 encoding a brassinosteroid-signaling kinase protein affects responses to salinity and abscisic acid. Biochem Biophys Res Comm 426:522–527. doi:10.1016/j.bbrc.2012.08.118

    Article  CAS  PubMed  Google Scholar 

  • López-Ráez JA, Verhage A, Fernández I, Garcıá JM, Azcón-Aguilar C, Flors V, Pozo MJ (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhiza fungi and the regulation of the oxylipin pathway. J Exp Bot 61:2589–2601. doi:10.1093/jxb/erq089

    Article  PubMed Central  PubMed  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schützs G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839. doi:10.1016/0092-8674(95)90199-X

    Article  CAS  PubMed  Google Scholar 

  • Patel R, Williams-Dautovich J, Cummins CL (2014) Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol Endocrinol 28:999–1011. doi:10.1210/me.2014-1062

    Article  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158–161, IN16–IN18

    Article  Google Scholar 

  • Rárová L, Zahler S, Liebl J, Kryštof V, Sedlák D, Bartůněk P, Kohout L, Strnad M (2012) Brassinosteroids inhibit in vitro angiogenesis in human endothelial cells. Steroids 77:1502–1509. doi:10.1016/j.steroids.2012.08.011

    Article  PubMed  Google Scholar 

  • Sheppard KE (2003) Corticosteroid receptors, 11 β hydroxysteroid dehydrogenase and the heart. Vitam Horm 66:77–112

    Article  CAS  PubMed  Google Scholar 

  • Spence RD, Wu H, Sharpe PJH, Clark KG (1986) Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells. Plant Cell Environ 9:197–202. doi:10.1111/1365-3040.ep11611639

    Google Scholar 

  • Stamm P, Ravindran P, Mohanty B, Tan EL, Yu H, Kumar PP (2012) Insights into the molecular mechanism of RGL2-mediated inhibition of seed germination in Arabidopsis thaliana. BMC Plant Biol 12(1):179. doi:10.1186/1471-2229-12-179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steigerová J, Rárová L, Oklešt’ková J, Křížová K, Levková M, Šváchová M, Kolář Z, Strnad M (2012) Mechanisms of natural brassinosteroid-induced apoptosis of prostate cancer cells. Food Chem Toxicol 50:4068–4076. doi:10.1016/j.fct.2012.08.031

    Article  PubMed  Google Scholar 

  • Thummel CS, Chory J (2002) Steroid signalling in plants and insects-common themes, different pathways. Genes Dev 16:3113–3129. doi:10.1101/gad.1042102

    Article  CAS  PubMed  Google Scholar 

  • Truss M, Beato M (1993) Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocr Rev 14(4):459–479. doi:10.1210/edrv-14-4-459

    CAS  PubMed  Google Scholar 

  • Turrini A, Sbrana C, Pitto L, Ruffini Castiglione M, Giorgetti L, Briganti R, Bracci T, Evangelista M, Nuti MP, Giovannetti M (2004) The antifungal Dm-AMP1protein from Dahli amerckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytol 163:393–403. doi:10.1111/j.1469-8137.2004.01107.x

    Article  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200. doi:10.1038/nature07272

    Article  CAS  PubMed  Google Scholar 

  • van der Weele CM, Spollen WG, Sharp RE, Baskin TI (2000) Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J Exp Bot 51:1555–1562. doi:10.1093/jexbot/51.350.1555

    Article  PubMed  Google Scholar 

  • Yamamoto KR (1985) Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet 19:209–252. doi:10.1146/annurev.ge.19.120185.001233

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Ito T, Zhao Y, Peng J, Kumar P, Meyerowitz EM (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. Proc Nat Acad Sci USA 101(20):7827–7832. doi:10.1073/pnas.0402377101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang YP, Wang ZM, Wu YC, Zhang X (2006) Stomatal characteristics of different green organs in wheat under different irrigation regimes. Acta Agron Sin 32:70–75

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by PRIN-2005-2007-2009 (co-ordinator Prof. Roger Fuoco) grants from the Italian Ministry of Education, University and Research (MIUR). We thank Dr. Mary Lokken for the editing of the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Bogani.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogani, P., Calistri, E., Biricolti, S. et al. The rat glucocorticoid receptor integration in Nicotiana langsdorffii genome affects plant responses to abiotic stresses and to arbuscular mycorrhizal symbiosis. Plant Biotechnol Rep 9, 209–220 (2015). https://doi.org/10.1007/s11816-015-0358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-015-0358-3

Keywords

Navigation