Skip to main content
Log in

Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The Arabidopsis gene AVP1 encodes an H+-pyrophosphatase that functions as a proton pump at the vacuolar membranes, generating a proton gradient across vacuolar membranes, which serves as the driving force for many secondary transporters on vacuolar membranes such as Na+/H+-antiporters. Overexpression of AVP1 could improve drought tolerance and salt tolerance in transgenic plants, suggesting a possible way in improving drought and salt tolerance in crops. The AVP1 was therefore introduced into peanut by Agrobacterium-mediated transformation. Analysis of AVP1-expressing peanut indicated that AVP1-overexpression in peanut could improve both drought and salt tolerance in greenhouse and growth chamber conditions, as AVP1-overexpressing peanuts produced more biomass and maintained higher photosynthetic rates under both drought and salt conditions. In the field, AVP1-overexpressing peanuts also outperformed wild-type plants by having higher photosynthetic rates and producing higher yields under low irrigation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AVP1 :

Arabidopsis vacuolar pyrophosphatase 1

IPT:

Isopentenyltransferase

References

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS, Westgate ME (2004) Grain yields with limited water. J Exp Bot 55:2385–2394

    Article  PubMed  CAS  Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heardet JE (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  PubMed  CAS  Google Scholar 

  • Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29

    Article  PubMed  CAS  Google Scholar 

  • Chang SX, Robison DJ (2003) Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter. For Ecol Manag 181:331–338

    Article  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    Article  PubMed  CAS  Google Scholar 

  • Craufurd PQ, Wheeler TR, Ellis RH, Summerfield RJ, Williams JH (1999) Effect of temperature and water deficit on water-use efficiency, carbon isotope discrimination, and specific leaf area in peanut. Crop Sci 39:136–142

    Article  Google Scholar 

  • FAOUN (2010) Food security statistics. http://www.fao.org/economic/ess/food-security-statistics/en/

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Fink GR, Hirschi KD (2002) Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiol 129:967–973

    Article  PubMed  CAS  Google Scholar 

  • Hashim IB, Koehler PE, Eitenmiller RR, Kvien CK (1993) Fatty acid composition and tocopherol content of drought stressed Florunner peanuts. Peanut Sci 20:21–24

    Article  CAS  Google Scholar 

  • Lamb MC, Davidson JI, Childre JW, Martin NR (1997) Comparison of peanut yield, quality, and net returns between nonirrigated and irrigated production. Peanut Sci 24:97–101

    Article  Google Scholar 

  • Lemaux PG (2008) Genetically engineered plants and foods: a scientist’s analysis of the issues (part I). Annu Rev Plant Biol 59:771–812

    Article  PubMed  CAS  Google Scholar 

  • Lemaux PG (2009) Genetically engineered plants and foods: a scientist’s analysis of the issues (part II). Annu Rev Plant Biol 60:511–559

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S, Gaxiola R (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310:121–125

    Article  PubMed  CAS  Google Scholar 

  • Li B, Wei A, Song C, Li N, Zhang J (2008) Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnol J 6:146–159

    Article  PubMed  CAS  Google Scholar 

  • Long SP, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13:241–248

    Article  PubMed  Google Scholar 

  • Lv S, Zhang K, Gao Q, Lian L, Song Y, Zhang J-R (2008) Overexpression of an H+-PPase from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49:1150–1164

    Article  PubMed  CAS  Google Scholar 

  • Lv S-L, Lian L-J, Tao PL, Li Z-X, Zhang K-W, Zhang J-R (2009) Overexpression of Thellungiella halophila H+-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta 229:899–910

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 102:18830–18835

    Article  PubMed  CAS  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt-tolerance and increases fiber yield in the field conditions. Plant Biotechnol J 9:88–99

    Article  PubMed  CAS  Google Scholar 

  • Peleg Z, Reguera M, Walia H, Blumwald E (2011) Cytokinin mediated source-sink modifications improve drought tolerance and increases grain yield in rice under water stress. Plant Biotechnol J 9:747–758

    Article  PubMed  CAS  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69

    Article  PubMed  CAS  Google Scholar 

  • Qin H, Gu Q, Zhang J, Sun L, Kuppu S, Zhang Y, Burow M, Payton P, Blumwald E, Zhang H (2011) Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol 52:1904–1914

    Article  PubMed  CAS  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636

    Article  PubMed  CAS  Google Scholar 

  • Sharma K, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis Hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19

    Article  PubMed  CAS  Google Scholar 

  • Stansell JR, Pallas JE (1985) Yield and quality response of Florunner peanut to applied drought at several growth stages. Peanut Sci 12:64–70

    Article  Google Scholar 

  • Tobias DJ, Yosihkawa K, Ikemoto A (1994) Seasonal changes of leaf chlorophyll content in the crown of several broad-leaved tree species. J Jpn Soc Reveg Technol 20:21–32

    Article  Google Scholar 

  • Yang S, Vanderbeld B, Wan J, Huang Y (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3:469–490

    Google Scholar 

  • Zhao FY, Zhang XJ, Li PH, Zhao YX, Zhang H (2006) Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol Breed 17:341–353

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants from National Peanut Board and Texas Peanut Producers Board. Hua Qin thanks the China Scholarship Council for a 1-year fellowship to study abroad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, H., Gu, Q., Kuppu, S. et al. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance. Plant Biotechnol Rep 7, 345–355 (2013). https://doi.org/10.1007/s11816-012-0269-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-012-0269-5

Keywords

Navigation