Skip to main content
Log in

Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Rice (Oryza sativa) is sensitive to salt stresses and cannot survive under low salt conditions, such as 50 mM NaCl. In an attempt to improve salt tolerance of rice, we introduced katE, a catalase gene of Escherichia coli, into japonica rice cultivar, Nipponbare. The resultant transgenic rice plants constitutively expressing katE were able to grow for more than 14 days in the presence of 250 mM NaCl, and were able to form flower and produce seeds in the presence of 100 mM NaCl. Catalase activity in the transgenic rice plants was 1.5- to 2.5-fold higher than non-transgenic rice plants. Our results clearly indicate that simple genetic modification of rice to express E. coli-derived catalase can efficiently increase its tolerance against salt stresses. The transformant presented here is one of the most salt-tolerant rice plants created by molecular breeding so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    PubMed  CAS  Google Scholar 

  • Akama K, Shiraishi H, Ohta S, Nakamura K, Okada K, Shimura Y (1992) Efficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes and Agrobacterium strains. Plant Cell Rep 12:7–11

    Article  CAS  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cell. Biochem Biophys Acta 1465:140–151

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Chu CC, Wang CC, Sun CS, Chen H, Yin KC, Chu YC, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen saurces. Sci Sin 18:659–668

    Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kingsbury RW, Kelley DB (1980) Cunningham GA, Wrona AF, Saline culture of crops: a genetic approach. Science 210:399–404

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium tumrefaciens and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–281

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Helmer GL, Freiley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthase. Plant Mol Biol 43:103–111

    Article  PubMed  CAS  Google Scholar 

  • Kaku N, Hibino T, Meng Y, Tanaka Y, Araki E, Takabe T, Takabe T (2000) Effects of overexpression of Escherichia coli katE and bet genes on the tolerance for salt stress in a freshwater cyanobacterium Synechococcus sp. PCC 7942. Plant Sci 159:281–288

    Article  PubMed  CAS  Google Scholar 

  • McClung CR (1997) Regulation of catalase in Arabidopsis. Free Radical Biol Med 23:489–496

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665

    Article  PubMed  CAS  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependant expression of arabidopsis RD29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  PubMed  CAS  Google Scholar 

  • Ngo TT, Lenhoff HM (1980) A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal Biochem 105:389–397

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    Article  PubMed  CAS  Google Scholar 

  • Ossowski I, Mulvey MR, Leco PA, Borys A, Loewen PC (1991) Nucleotide sequence of Escherichia coli katE, which encodes catalase HPII. J Bacteriol 173:514–520

    Google Scholar 

  • Ozeki Y, Matui K, Sakuta M, Matsuoka M, Ohashi Y, Kano-Murakami Y, Yamamoto N, Tanaka Y (1990) Differential regulation of phenylalanine ammonia-lyase genes during anthocyanin synthesis and by transfer effect in carrot cell suspension cultures. Physiol Plant 80:379–387

    Article  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca+–dependant protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata A, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165:1–52

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts, Plant Sci 143:131–138

    Article  Google Scholar 

  • Toki S (1997) Rapid and efficient Agrobacterium-mediated transformation in rice, Plant Mol Biol Rep 15:10–21

    Google Scholar 

  • Ueda A, Shi W, Nakamura T, Takabe T (2002) Analysis of salt-inducible genes in barley roots by differential display. J Plant Res 115:119–130

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Miyazaki S, Kawai K, Deyholos M, Galbraith DW, Bohnert HJ (2003) Temporal progression of gene expression responses to salt shock in maize roots. Plant Mol Biol 52:873–891

    Article  PubMed  CAS  Google Scholar 

  • Wang ZL, Li PH, Fredricksen M, Gong ZZ, Kim CS, Zhang C, Bohnert HJ, Zhu JK, Bressan RA, Hasegawa PM, Zhao YX, Zhang H (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci 166:609–616

    Article  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GM (1982) Living with water stress: evolution of osmolyte system. Science 217:1214–1222

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (1999) Understanding and improving plant tolerance to salinity stress. AgBiotechnet 1:1–5

    Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Masateru Yamanaka and Mr. Masataka Asada, Department of Agriculture, Tokyo University of Agriculture for technical advice and valuable comments. We also thank Dr. Munetaka Sugiyama, Graduate School of Science, The University of Tokyo for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Nagamiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagamiya, K., Motohashi, T., Nakao, K. et al. Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE. Plant Biotechnol Rep 1, 49–55 (2007). https://doi.org/10.1007/s11816-007-0007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-007-0007-6

Keywords

Navigation