Skip to main content
Log in

Atomically Dispersed Fe–N–S-Doped Carbon as an Efficient Li–S Battery Host for Capturing Polysulfides

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Lithium–sulfur batteries (LSBs) have emerged as promising candidates for advanced energy storage systems, due to their remarkable theoretical capacity of 1675 mAh g−1 and specific energy density of 2600 Wh kg−1, surpassing those of conventional Li-ion batteries. The abundance and cost-efficiency of sulfur make LSBs attractive in further. However, practical applications of LSBs face challenges such as the insulating nature of sulfur, migration of soluble lithium polysulfide (LIPS), and sluggish redox kinetics. Carbon-based materials have been explored to circumvent these barriers; however, their weak physical interactions limit their effectiveness. Heteroatom doping has shown the potential for anchoring LIPS; but optimization remains a challenge. In this study, we introduce a novel approach involving the synthesis of uniformly dispersed iron on activated carbon (AC, Ketjen black) as a support, yielding a single iron–nitrogen–sulfur-doped carbon (Fe–NSC) composite. This composite exhibited the following advantages as an LSB host: superior dispersion of the Fe catalyst, induced high surface area, and an increased proportion of Fe3+, which led to improved catalytic activity. These properties result in enhanced polysulfide capture and stable rate performance in the Fe–NSC-based LSBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Zou, T. Zhou, Y. Chen, X. Xiong, W. Jing, X. Dai, M. Shi, N. Li, J. Sun, S. Zhang, C. Zhang, Y. Liu, Z. Guo, Adv. Energy Mater. 12, 2103981 (2022)

    Article  CAS  Google Scholar 

  2. L. Fan, M. Li, X. Li, W. Xiao, Z. Chen, J. Lu, Joule 3, 361 (2019)

    Article  CAS  Google Scholar 

  3. Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang, G. Wang, Adv. Mater. 33, 2003666 (2021)

    Article  CAS  Google Scholar 

  4. S. Li, W. Zhang, J. Zheng, M. Lv, H. Song, L. Du, Adv. Energy Mater. 11, 2000779 (2021)

    Article  CAS  Google Scholar 

  5. F. Li, Q. Liu, J. Hu, Y. Feng, P. He, J. Ma, Nanoscale 11, 15418 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. Y. Huang, L. Lin, C. Zhang, L. Liu, Y. Li, Z. Qiao, J. Lin, Q. Wei, L. Wang, Q. Xie, D.-L. Peng, Adv. Sci. 9, 2106004 (2022)

    Article  CAS  Google Scholar 

  7. C. Sun, Y. Liu, J. Sheng, Q. Huang, W. Lv, G. Zhou, H.-M. Cheng, Mater. Horiz. 7, 2487 (2020)

    Article  CAS  Google Scholar 

  8. Q. Zhao, Q. Zhu, Y. Liu, B. Xu, Adv. Funct. Mater. 31, 2100457 (2021)

    Article  CAS  Google Scholar 

  9. Z. Gu, C. Cheng, T. Yan, G. Liu, J. Jiang, J. Mao, K. Dai, J. Li, J. Wu, L. Zhang, Nano Energy 86, 106111 (2021)

    Article  CAS  Google Scholar 

  10. R. Wang, R. Wu, X. Yan, D. Liu, P. Guo, W. Li, H. Pan, Adv. Funct. Mater. 32, 2200424 (2022)

    Article  CAS  Google Scholar 

  11. R. Saroha, J.-H. Ahn, J.S. Cho, Korean J. Chem. Eng. 38, 461 (2021)

    Article  CAS  Google Scholar 

  12. S.-H. Yeon, W. Ahn, K.-H. Shin, C.-S. Jin, K.-N. Jung, J.-D. Jeon, S. Lim, Y. Kim, Korean J. Chem. Eng. 32, 867 (2015)

    Article  CAS  Google Scholar 

  13. R. Yan, M. Oschatz, F. Wu, Carbon 161, 162 (2020)

    Article  CAS  Google Scholar 

  14. W.-G. Lim, C. Jo, J. Lee, D.S. Hwang, Korean J. Chem. Eng. 35, 579 (2018)

    Article  CAS  Google Scholar 

  15. K. Liu, S. Gu, H. Yuan, H. Wang, W. Tan, F. Jiang, J. Chen, K. Liao, C. Yan, F. Yang, Z. Lu, Z. Xu, Compos. Commun. 30, 101079 (2022)

    Article  Google Scholar 

  16. X. Zhou, R. Meng, N. Zhong, S. Yin, G. Ma, X. Liang, Small Methods 5, 2100571 (2021)

    Article  CAS  Google Scholar 

  17. J. Zhao, J. Deng, J. Han, S. Imhanria, K. Chen, W. Wang, Chem. Eng. J. 389, 124323 (2020)

    Article  CAS  Google Scholar 

  18. M. Hu, Z. Cai, S. Yang, Z. Wang, F. Shen, X. Liang, G. Sun, H. Ren, Y. Cao, B. Hu, S. Liu, H. Tan, K. Zhou, Adv. Funct. Mater. 33, 2212097 (2023)

    Article  CAS  Google Scholar 

  19. L. Li, Y. Wen, G. Han, Y. Liu, Y. Song, W. Zhang, J. Sun, L. Du, F. Kong, Y. Ma, Y. Gao, J. Wang, C. Du, G. Yin, Chem. Eng. J. 437, 135320 (2022)

    Article  CAS  Google Scholar 

  20. H.-E. Kim, S. Jang, H. Lim, W. Chung, I. Nam, J.H. Bang, Appl. Surf. Sci. 624, 157161 (2023)

    Article  CAS  Google Scholar 

  21. Y. Wang, A. Cho, G. Jia, X. Cui, J. Shin, I. Nam, K.-J. Noh, B.J. Park, R. Huang, J.W. Han, Angew. Chem. Int. Ed. 62, e202300119 (2023)

    Article  CAS  Google Scholar 

  22. J. Hwang, Korean J. Chem. Eng. 38, 1104 (2021)

    Article  CAS  Google Scholar 

  23. X. Cui, L. Gao, S. Lei, S. Liang, J. Zhang, C.D. Sewell, W. Xue, Q. Liu, Z. Lin, Y. Yang, Adv. Funct. Mater. 31, 2009197 (2021)

    Article  CAS  Google Scholar 

  24. L. Yu, Y. Li, Y. Ruan, Angew. Chem. Int. Ed. 60, 25296 (2021)

    Article  CAS  Google Scholar 

  25. S. He, J. Yang, S. Liu, X. Wang, X. Che, M. Wang, J. Qiu, Chem. Eng. J. 454, 140202 (2023)

    Article  CAS  Google Scholar 

  26. L. Ren, J. Liu, Y. Zhao, Y. Wang, X. Lu, M. Zhou, G. Zhang, W. Liu, H. Xu, X. Sun, Adv. Funct. Mater. 33, 2210509 (2023)

    Article  CAS  Google Scholar 

  27. H.S. Yoon, B.Y. Lim, H.Y. Park, S.-K. Kim, W.S. Jung, J. Electroanal. Chem. 948, 117813 (2023)

    Article  Google Scholar 

  28. M. Ayiania, M. Smith, A.J.R. Hensley, L. Scudiero, J.-S. McEwen, M. Garcia-Perez, Carbon 162, 528 (2020)

    Article  CAS  Google Scholar 

  29. C. Ling, S. Wu, T. Dong, H. Dong, Z. Wang, Y. Pan, J. Han, J. Hazard. Mater. 423, 127082 (2022)

    Article  CAS  PubMed  Google Scholar 

  30. Z. Liu, F. He, L. Zhou, Z. Li, L. Zhong, J. Ding, J. Chem. Technol. Biotechnol. 98, 1731 (2023)

    Article  CAS  Google Scholar 

  31. Z. Chen, H. Niu, J. Ding, H. Liu, P.-H. Chen, Y.-H. Lu, Y.-R. Lu, W. Zuo, L. Han, Y. Guo, S.-F. Hung, Y. Zhai, Angew. Chem. Int. Ed. 60, 25404 (2021)

    Article  CAS  Google Scholar 

  32. D.-R. Deng, T.-H. An, Y.-J. Li, Q.-H. Wu, M.-S. Zheng, Q.-F. Dong, J. Mater. Chem. A 4, 16184 (2016)

    Article  CAS  Google Scholar 

  33. J.H. Ahn, G.K. Veerasubramani, S.-M. Lee, T.-S. You, D.-W. Kim, J. Electrochem. Soc. 166, A5201 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Research Foundation (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1004206), the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korea government (No. 20214000000280), and the Competency Development Program for Industry Specialists of the Korean government operated by KIAT (No. P0012453).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Inho Nam or Won Suk Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Park, J., Seol, ML. et al. Atomically Dispersed Fe–N–S-Doped Carbon as an Efficient Li–S Battery Host for Capturing Polysulfides. Korean J. Chem. Eng. 41, 1209–1216 (2024). https://doi.org/10.1007/s11814-024-00036-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00036-1

Keywords

Navigation