Skip to main content

Advertisement

Log in

The electrocatalysis of Mn-Co3O4/CeO2@C particles with different Ce content modified Ti/PbO2 anode and its application for copper electrodeposition

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The oxygen evolution kinetics of industrial copper electrodeposition is slow, resulting in low electrocatalytic activity and high energy consumption. In this work, a quaternary composite of carbon coated active particles containing Mn, Co and Ce were prepared (Mn-Co3O4/CeO2@C), and Ti/Sb-SnO2/PbO2 electrode doped with these active particles was prepared by co-electrodeposition. The microstructure and chemical composition of the electrode was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffractometry (XRD). Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and Tafel polarization curve (Tafel) were used to study the electrochemical properties of anode materials. The results showed that the doping of Mn-Co3O4/CeO2@C active particles promoted the crystal transition of PbO2, decreased the average grain size, and the doping of Ce increases the average valence state of Co. The modified titanium electrode showed excellent catalytic activity of the oxygen evolution reaction (OER) characteristics. The overpotential of the doped Ti/Sb-SnO2/PbO2 anode was only 453 mV when the current density was 20 mA cm−2 in 0.5 M H2SO4 solution, which is 508 mV lower than that of the undoped Ti/Sb-SnO2/PbO2 anode. In simulated copper electro-deposition experiments, the cell voltage was reduced by about 400 mV, compared to the undoped Ti/Sb-SnO2/PbO2 electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ding, J. Chen, T. Wang, J. Zhao, C. Chen and Y. Niu, Miner. Eng., 135, 21 (2019).

    Article  CAS  Google Scholar 

  2. M. Stelter and H. Bombach, Adv. Eng. Mater., 6, 558 (2004).

    Article  CAS  Google Scholar 

  3. Y. Liu, W. Zhu, Z. Chen, Q. Yu, Q. Hu, Z. Zheng, L. Gui and Y. Song, Int. J. Hydrogen Energy, 46, 6380 (2021).

    Article  CAS  Google Scholar 

  4. V. Krstić and B. Pešovski, Hydrometallurgy, 185, 71 (2019).

    Article  Google Scholar 

  5. L. C. Espinoza, P. Sepúlveda, A. García, D. M. d. Godoi and R. Salazar, Chemosphere, 251, 126674 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. H. W. Lim, D. K. Cho, J. H. Park, S. G. Ji, Y. J. Ahn, J. Y. Kim and C. W. Lee, ACS Catal., 11, 12423 (2021).

    Article  CAS  Google Scholar 

  7. A. Touni, O. A. Grammenos, A. Banti, D. Karfaridis, C. Prochaska, D. Lambropoulou, E. Pavlidou and S. Sotiropoulos, Electrochim. Acta, 390, 138866 (2021).

    Article  CAS  Google Scholar 

  8. S. Pan, H. Li, D. Liu, R. Huang, X. Pan, D. Ren, J. Li, M. Shakouri, Q. Zhang, M. Wang, C. Wei, L. Mai, B. Zhang, Z. Wang, M. Graetzel and X. Zhang, Nat. Commun., 13, 2294 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. C. Pasquini, I. Zaharieva, D. González-Flores, P. Chernev, M. R. Mohammadi, L. Guidoni, R. D. L. Smith and H. Dau, J. Am. Chem. Soc., 141, 2938 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. X. Yang, H. Li, A. Lu, S. Min, Z. Idriss, M. N. Hedhili, K. Huang, H. Idriss and L. Li, Nano Energy, 25, 42 (2016).

    Article  CAS  Google Scholar 

  11. A. Li, S. Kong, C. Guo, H. Ooka, K. Adachi, D. Hashizume, Q. Jiang, H. Han, J. Xiao and R. Nakamura, Nat. Catal., 5, 109 (2022).

    Article  CAS  Google Scholar 

  12. B. Chen, W. Yan, Y. He, H. Huang, H. Leng, Z. Guo and J. Liu, J. Electrochem. Soc., 166, 119 (2019).

    Article  Google Scholar 

  13. X. Wang, L. Wang, D. Wu, D. Yuan, H. Ge and X. Wu, Sci. Total Environ., 855, 158880 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. T. Lwai, M. Murakami, S. Takai, T. Yabutsuka and T. Yao, J. Alloy Campd., 780, 85 (2019).

    Article  Google Scholar 

  15. K. Irikura, N. Bocchi, R. C. Rocha-Filho, S. R. Biaggio, J. Iniesta and V. Montiel, J. Environ. Manage, 183, 306 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. S. Chen, B. Chen, S. Wang, W. Yan, Y. He, Z. Guo and R. Xu, J. Alloy. Compd., 815, 152551 (2020).

    Article  CAS  Google Scholar 

  17. B. Yu, R. Xu, B. Chen, X. Wang and S. He, Int. J. Hydrogen Energy, 48, 11131 (2023).

    Article  CAS  Google Scholar 

  18. S. He, R. Xu, L. Sun, Y. Fan, Z. Zhao, H. Liu and H. Lv, Hydrometallurgy, 194, 105357 (2020).

    Article  CAS  Google Scholar 

  19. C. Zhang, J. Liu and B. Chen, Ceram. Int., 44, 19735 (2018).

    Article  CAS  Google Scholar 

  20. X. Wang, J. Wang, W. Jiang, C. Chen, B. Yu and R. Xu, Sep. Purif. Technol., 272, 118916 (2021).

    Article  CAS  Google Scholar 

  21. J. Wei, J. Wang, X. Wang, W. Jiang, N. Hu, L. Wang, M. Li, R. Xu and L. Yang, Electrochim. Acta, 432, 141221 (2022).

    Article  CAS  Google Scholar 

  22. X. Wang, J. Wang, B. Yu, W. Jiang, J. Wei, B. Chen, R. Xu and L. Yang, J. Hazard. Mater., 428, 128212 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. C. Tang, Y. Lu, F. Wang, H. Niu, L. Yu and J. Xue, Electrochim. Acta, 331, 165381 (2020).

    Article  Google Scholar 

  24. Y. Liu, T. Sun, Q. Su, Y. Tang, X. Xu, M. Akram and B. Jiang, J. Colloid Interface Sci., 575, 254 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. W. Alnoush, R. Black and D. Higgins, Chem. Catal., 1, 997 (2021).

    Article  CAS  Google Scholar 

  26. Z. Zhao, Y. Long, S. Luo, Y. Luo, M. Chen and J. Ma, J. Energy Chem., 60, 546 (2021).

    Article  CAS  Google Scholar 

  27. H. Kim, E. Hwang, H. Park, B. Lee, J. H. Jang, H. Kim, S. H. Ahn and S. Kim, Appl. Catal. B-Environ., 206, 608 (2017).

    Article  CAS  Google Scholar 

  28. O. Shmychkova, T. Luk’yanenko, R. Amadelli and A. Velichenko, J. Electroanal. Chem., 706, 86 (2013).

    Article  CAS  Google Scholar 

  29. H. Jin, X. Zhang, Y. Yu and X. Chen, Chem. Eng. J., 435, 135167 (2022).

    Article  CAS  Google Scholar 

  30. Y. Liu, C. Ma, Q. Zhang, W. Wang, P. Pan, L. Gu, D. Xu, J. Bao and Z. Dai, Adv. Mater., 31, 1900062 (2019).

    Article  Google Scholar 

  31. Z. Wei, X. Kang, S. Xu, X. Zhou, B. Jia and Q. Feng, Chin. J. Chem. Eng., 32, 191 (2021).

    Article  CAS  Google Scholar 

  32. T. Shinagawa, A. T. Garcia-Esparza and K. Takanabe, Sci. Rep., 5, 13801 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc., 135, 16977 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. J. Huang, H. Sheng, R. D. Ross, J. Han, X. Wang, B. Song and S. Jin, Nat. Commun., 12, 3036 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Shaanxi Science and Technology Department (2022GY-384, 2022JBGS2-07, 2021LLRH-05-21, S2022-YD-QFY-0107), the Open Foundation of Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education (KLSNFM2020001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Nie or Wenyan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., He, R., Nie, F. et al. The electrocatalysis of Mn-Co3O4/CeO2@C particles with different Ce content modified Ti/PbO2 anode and its application for copper electrodeposition. Korean J. Chem. Eng. 40, 3059–3067 (2023). https://doi.org/10.1007/s11814-023-1538-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1538-4

Keywords

Navigation