Skip to main content
Log in

CFD modeling of a multichannel Fischer-Tropsch reactor module with microscale cooling channels: Effects of mirrored structure cooling layers

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Computational fluid dynamics (CFD) modeling of a multichannel Fischer-Tropsch reactor with microscale cooling channels is addressed in this study, wherein detailed mass, momentum, and energy balances were solved to retrieve detailed distributions of the conversion and temperature of both catalytic and cooling layers. A comparison between experimental data and simulation results showed relative errors of 6.73% and 1.22% for conversion and C5+ selectivity, respectively, which proves the validity of the proposed model. The novel structure of the reactor composed of mirrored structure cooling layers is suggested to prevent the thermal instability of a large-scale reactor module. The simulation showed that the symmetric distribution of the dense cooling channel area in the early part of the reactor decreased peak temperatures (ΔTmax=28.6 °C), whereas the nonmirrored case resulted in hot spots caused by the limited heat transfer capacity (ΔTmax=39.2 °C). The effects of the feed/coolant temperature, space velocity, and pressure were evaluated, and high temperatures and pressures resulted in a steep temperature increase in the early part of the reactor, whereas the high space velocity showed an increase in the area of peak temperature. Further, the analysis showed trade-offs of operating conditions between the conversion and selectivity of desired products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CP :

heat capacity [J/(kg·K]

\({\rm{D}}_i^m\) :

mixture-averaged diffusion coefficient of species i [m2/s]

\({\rm{D}}_i^T\) :

thermal diffusion coefficient of species i [kg/(m·s)]

Dik :

multicomponent Maxwell-Stefan diffusivities of species i and k [m2/s]

F :

volume force [N/m3]

I :

identity matrix

j i :

mass flux of species i [kg/(m2·s)]

Mn :

mean molar mass [kg/mol]

Q:

heat source term [W/m3]

Qbr :

mass source term [kg/(m3·s)]

u :

velocity vector [m/s]

ω i :

mass fraction of species i [dimensionless]

ε P :

porosity [dimensionless]

κ :

thermal conductivity [W/(m·K)]

κ br :

permeability of the porous medium [m2]

μ :

dynamic viscosity [Pa·s]

ρ :

fluid density [kg/m3]

References

  1. M. E. Dry, Catal. Today, 71, 227 (2002).

    Article  CAS  Google Scholar 

  2. C. Song, Catal. Today, 115, 2 (2006).

    Article  CAS  Google Scholar 

  3. T. K. Das, W. A. Conner, J. Li, G. Jacobs, M. E. Dry and B. H. Davis, Energy Fuels, 19, 1430 (2005).

    Article  CAS  Google Scholar 

  4. W. Ma, G. Jacobs, D. E. Sparks, R. L. Spicer, B. H. Davis, J. L. S. Klettlinger and C. H. Yen, Catal. Today, 228, 158 (2014).

    Article  CAS  Google Scholar 

  5. R. Zennaro, M. Tagliabue and C. H. Bartholomew, Catal. Today, 58, 309 (2000).

    Article  CAS  Google Scholar 

  6. I. C. Yates and C. N. Satterfield, Energy Fuels, 5, 168 (1991).

    Article  CAS  Google Scholar 

  7. K. Keyvanloo, S. J. Lanham and W. C. Hecker, Catal. Today, 270, 9 (2016).

    Article  CAS  Google Scholar 

  8. Y. Sun, G. Yang, L. Zhang and Z. Sun, Chem. Eng. Process., 119, 44 (2017).

    Article  CAS  Google Scholar 

  9. N. Moazami, M. L. Wyszynski, K. Rahbar, A. Tsolakis and H. Mahmoudi, Chem. Eng. Sci., 171, 32 (2017).

    Article  CAS  Google Scholar 

  10. M. Ostadi, E. Rytter and M. Hillestad, Chem. Eng. Res. Des., 114, 236 (2016).

    Article  CAS  Google Scholar 

  11. L. Fratalocchi, C. G. Visconti, G. Groppi, L. Lietti and E. Tronconi, Chem. Eng. J., 349, 829 (2018).

    Article  CAS  Google Scholar 

  12. S. R. Deshmukh, A. L. Y. Tonkovich, K. T. Jarosch, L. Schrader, S. P. Fitzgerald, D. R. Kilanowski, J. J. Lerou and T. J. Mazanec, Ind. Eng. Chem. Res., 49, 10883 (2010).

    Article  CAS  Google Scholar 

  13. D.-Y. Shin, K.-S. Ha, M.-J. Park, G. Kwak, Y.-J. Lee and K.-W. Jun, Fuel, 158, 826 (2015).

    Article  CAS  Google Scholar 

  14. G. Arzamendi, P. M. Diéguez, M. Montes, J. A. Odriozola, E. Falabella Sousa-Aguiar and L. M. Gandía, Chem. Eng. J., 160, 915 (2010).

    Article  CAS  Google Scholar 

  15. M.-S. Shin, N. Park, M.-J. Park, J.-Y. Cheon, J. K. Kang, K.-W. Jun and K.-S. Ha, Fuel Process. Technol., 118, 235 (2014).

    Article  CAS  Google Scholar 

  16. J.-S. Park, D.-E. Kim, Y.-J. Lee, G. Kwak, K.-W. Jun and M.-J. Park, Ind. Eng. Chem. Res., 55, 9416 (2016).

    Article  CAS  Google Scholar 

  17. K. S. Kshetrimayum, I. Jung, J. Na, S. Park, Y. Lee, S. Park, C.-J. Lee and C. Han, Ind. Eng. Chem. Res., 55, 543 (2016).

    Article  CAS  Google Scholar 

  18. S. Saeidi, M. K. Nikoo, A. Mirvakili, S. Bahrani, N. A. S. Amin and M. R. Rahimpour, Rev. Chem. Eng., 31, 209 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Research Project for “Carbon Upcycling Project for Platform Chemicals” of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (Grant number: 2022M3J3A104602111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-June Park.

Electronic supplementary material

11814_2023_1497_MOESM1_ESM.pdf

Supporting Information: CFD modeling of a multichannel Fischer-Tropsch reactor module with microscale cooling channels: Effects of mirrored structure cooling layers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, Y., Oh, D.B., Park, J.E. et al. CFD modeling of a multichannel Fischer-Tropsch reactor module with microscale cooling channels: Effects of mirrored structure cooling layers. Korean J. Chem. Eng. 40, 2572–2580 (2023). https://doi.org/10.1007/s11814-023-1497-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1497-9

Keywords

Navigation