Skip to main content

Advertisement

Log in

Data-driven designs and multi-scale simulations of enhanced ion transport in low-temperature operation for lithium-ion batteries

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The low-temperature operation of lithium-ion batteries (LIBs) is a challenge in achieving high-stability battery technology. Moreover, the design and analysis of low-temperature electrolytes are impeded by the limited understanding of various solvent components and their combinations. In this study, we present a data-driven strategy to design electrolytes with high ionic conductivity at low temperature using various machine-learning algorithms, such as random forest and feedforward neural networks. To establish a link between prediction of electrolyte chemistry and cell performance of LIBs, we performed parameter-free molecular dynamics (MD) prediction of various salt concentrations and temperatures for target solvents. Finally, electrochemical modeling was performed using these properties as the required material parameters. Combining works of the fully parameterized Newman models, parameter-free MD, and data-driven prediction of electrolyte chemistry can help measure the discharge voltage of batteries and enable in silico engineering of electrolyte development for realizing low-temperature operation of LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hubble, D. E. Brown, Y. Z. Zhao, C. Fang, J. Lau, B. D. McCloskey and G. Liu, Energy Environ. Sci., 15, 550 (2022).

    Article  CAS  Google Scholar 

  2. B. Dunn, H. Kamath and J. M. Tarascon, Science, 334, 928 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. S. Dajnowicz, G. Agarwal, J. M. Stevenson, L. D. Jacobson, F. Ramezanghorbani, K. Leswing, R. A. Friesner, M. D. Halls and R. Abel, J. Phys. Chem. B, 126, 6271 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Y. G. Cho, M. Q. Li, J. Holoubek, W. K. Li, Y. J. Yin, Y. S. Meng and Z. Chen, Acs Energy Lett., 6, 2016 (2021).

    Article  CAS  Google Scholar 

  5. T. Baba, S. Kajita, T. Shiga and N. Ohba, Sci. Rep, 12, 7291 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Y. L. Lin, S. Huang, L. Zhong, S. J. Wang, D. M. Han, S. Ren, M. Xiao and Y. Z. Meng, Energy Storage Mater., 34, 128 (2021).

    Article  Google Scholar 

  7. S. J. Tan, W. P. Wang, Y. F. Tian, S. Xin and Y. G. Guo, Adv. Fund. Mater., 31, 2105253 (2021).

    Article  CAS  Google Scholar 

  8. X. Tang, D. Xiao, Z. Xu, Q. Liu, B. Ding, H. Dou and X. Zhang, J. Mater. Chem. A, 10, 18374 (2022).

    Article  CAS  Google Scholar 

  9. Q. Y. Li, S. H. Jiao, L. L. Luo, M. S. Ding, J. M. Zheng, S. S. Cartmell, C. M. Wang, K. Xu, J. G. Zhang and W. Xu, Acs Appl. Mater. Inter., 9, 18826 (2017).

    Article  CAS  Google Scholar 

  10. N. Yao, X. Chen, Z. H. Fu and Q. Zhang, Chem. Rev., 122, 10970 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. S. Matsuda, K. Nishioka and S. Nakanishi, Sci. Rep., 9, 6211 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. A. Benayad, D. Diddens, A. Heuer, A. N. Krishnamoorthy, M. Maiti, F. Le Cras, M. Legallais, F. Rahmanian, Y. Shin, H. Stein, M. Winter, C. Wolke, P. Yan and I. Cekic-Laskovic, Adv. Energy Mater., 12, 2102678 (2022).

    Article  CAS  Google Scholar 

  13. J. Rodriguez, M. Politi, S. Adler, D. Beck and L. Pozzo, Mol. Syst. Des. Eng., 7, 933 (2022).

    Article  Google Scholar 

  14. J. P. Correa-Baena, K. Hippalgaonkar, J. van Duren, S. Jaffer, V. R. Chandrasekhar, V. Stevanovic, C. Wadia, S. Guha and T. Buonassisi, Joule, 2, 1410 (2018).

    Article  CAS  Google Scholar 

  15. D. P. Tabor, L. M. Roch, S. K. Saikin, C. Kreisbeck, D. Sheberla, J. H. Montoya, S. Dwaraknath, M. Aykol, C. Ortiz, H. Tribukait, C. Amador-Bedolla, C. J. Brabec, B. Maruyama, K. A. Persson and A. Aspuru-Guzik, Nat. Rev. Mater., 3, 5 (2018).

    Article  CAS  Google Scholar 

  16. O. Nordness and J. F. Brennecke, Chem. Rev., 120, 12873 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. J. G. McDaniel and C. Y. Son, J. Phys. Chem. B, 122, 7154 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Q. Y. Dou, S. L. Lei, D. W. Wang, Q. N. Zhang, D. W. Xiao, H. W. Guo, A. P. Wang, H. Yang, Y. L. Li, S. Q. Shi and X. B. Yan, Energy Environ. Sci., 11, 3212 (2018).

    Article  CAS  Google Scholar 

  19. T. T. N. Nguyen and M. S. Lee, J. Mol. Liq, 289, 111112 (2019).

    Article  CAS  Google Scholar 

  20. A. J. Ringsby, K. D. Fong, J. Self, H. K. Bergstrom, B. D. McCloskey and K. A. Persson, J. Electrochem. Soc., 168, 080501 (2021).

    Article  CAS  Google Scholar 

  21. W. X. Lv, C. J. Zhu, J. Chen, C. X. Ou, Q. Zhang and S. W. Zhong, Chem. Eng. J, 418, 129400 (2021).

    Article  CAS  Google Scholar 

  22. S. Park, S. Y. Jeong, T. K. Lee, M. W. Park, H. Y. Lim, J. Sung, J. Cho, S. K. Kwak, S. Y. Hong and N. S. Choi, Nat. Commun., 12, 838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. K. Kim, H. Ma, S. Park and N. S. Choi, Acs Energy Lett., 5, 1537 (2020).

    Article  CAS  Google Scholar 

  24. Q. Li, Z. Cao, W. Wahyudi, G. Liu, G. T. Park, L. Cavallo, T. D. Anthopoulos, L. M. Wang, Y. K. Sun, H. N. Alshareef and J. Ming, Acs Energy Lett., 6, 69 (2021).

    Article  CAS  Google Scholar 

  25. D. S. Hall, J. Self and J. R. Dahn, J. Phys. Chem. C, 119, 22322 (2015).

    Article  CAS  Google Scholar 

  26. T. Ohsaki, T. Kishi, T. Kuboki, N. Takami, N. Shimura, Y. Sato, M. Sekino and A. Satoh, J. Power Sources, 146, 97 (2005).

    Article  CAS  Google Scholar 

  27. M. S. Ding, K. Xu, S. S. Zhang, K. Amine, G. L. Henriksen and T. R. Jow, J. Electrochem. Soc., 148, A1196 (2001).

    Article  CAS  Google Scholar 

  28. A. Fly, I. Kirkpatrick and R. Chen, Appl. Therm. Eng., 189, 116750 (2021).

    Article  CAS  Google Scholar 

  29. T. T. Vu, G. H. Eom, J. Lee, M. S. Park and J. Moon, J. Power Sources, 496, 229791 (2021).

    Article  CAS  Google Scholar 

  30. M. C. Smart, B. V. Ratnakumar, L. D. Whitcanack, K. B. Chin, S. Surampudi, H. Croft, D. Tice and R. Staniewicz, J. Power Sources, 119, 349 (2003).

    Article  Google Scholar 

  31. M. C. Smart, B. V. Ratnakumar, K. B. Chin and L. D. Whitcanack, J. Electrochem. Soc., 157, A1361 (2010).

    Article  CAS  Google Scholar 

  32. M. Giesecke, G. Meriguet, F. Hallberg, Y. Fang, P. Stilbs and I. Furo, Phys. Chem. Chem. Phys., 17, 3402 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. H. Y. Lu, J. S. Hu, L. T. Wang, J. Z. Li, X. Ma, Z. C. Zhu, H. Q. Li, Y. J. Zhao, Y. J. Li, J. X. Zhao and B. G. Xu, Adv. Funct. Mater., 32, 2112540 (2022).

    Article  CAS  Google Scholar 

  34. W. R. Xue, T. Qin, Q. Li, M. W. Zan, X. Q. Yu and H. Li, Energy Storage Mater., 50, 598 (2022).

    Article  Google Scholar 

  35. F. Hanke, N. Modrow, R. L. C. Akkermans, I. Korotkin, F. C. Mocanu, V. A. Neufeld and M. Veit, J. Electrochem. Soc., 167, 013522 (2019).

    Article  Google Scholar 

  36. M. Fasahat and M. Manthouri, J. Power Sources, 469, 228375 (2020).

    Article  CAS  Google Scholar 

  37. N. Zhang, T. Deng, S. Q. Zhang, C. H. Wang, L. X. Chen, C. S. Wang and X. L. Fan, Adv. Mater., 34, 2107899 (2022).

    Article  CAS  Google Scholar 

  38. K. Kim, D. Hwang, S. Kim, S. O. Park, H. Cha, Y. S. Lee, J. Cho, S. K. Kwak and N. S. Choi, Adv. Energy Mater., 10, 2070069 (2020).

    Article  CAS  Google Scholar 

  39. S. A. Han, H. Qutaish, M. S. Park, J. Moon and J. H. Kim, Chem-Asian J., 16, 4010 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Z. Y. Xu, Y. J. Guo and J. H. Saleh, Neural Comput. Appl., 34, 15997 (2022).

    Article  Google Scholar 

  41. K. L. Liu, X. S. Hu, H. Y. Zhou, L. Tong, W. D. Widanage and J. Marco, Ieee-Asme T Mech., 26, 2944 (2021).

    Article  Google Scholar 

  42. Y. Li, C. F. Zou, M. Berecibar, E. Nanini-Maury, J. C. W. Chan, P. van den Bossche, J. Van Mierlo and N. Omar, Appl. Energy, 232, 197 (2018).

    Article  CAS  Google Scholar 

  43. Y. Choi, S. Ryu, K. Park and H. Kim, Ieee Access, 7, 75143 (2019).

    Article  Google Scholar 

  44. R. L. C. Akkermans, N. A. Spenley and S. H. Robertson, Mol. Simulat., 39, 1153 (2013).

    Article  CAS  Google Scholar 

  45. R. L. C. Akkermans, N. A. Spenley and S. H. Robertson, Mol. Simulat., 47, 540 (2021).

    Article  CAS  Google Scholar 

  46. S. Lee, J. Moon, H. M. Bintang, S. Shin, H. G. Jung, S. H. Yu, S. H. Oh, D. Whang and H. D. Lim, J. Mater. Chem. A, 9, 10838 (2021).

    Article  CAS  Google Scholar 

  47. A. Khetan, H. R. Arjmandi, V. Pande, H. Pitsch and V. Viswanathan, J. Phys. Chem. C, 122, 8094 (2018).

    Article  CAS  Google Scholar 

  48. J. Moon, B. Lee, M. Cho and K. Cho, J. Power Sources, 328, 558 (2016).

    Article  CAS  Google Scholar 

  49. D. W. Kang, S. S. Park, H. J. Choi, J. H. Park, J. H. Lee, S. M. Lee, J. H. Choi, J. Moon and B. G. Kim, Acs Nano, 16, 11892 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. K. H. Park, D. W. Kang, J. W. Park, J. H. Choi, S. J. Hong, S. H. Song, S. M. Lee, J. Moon and B. G. Kim, J. Mater. Chem. A, 9, 1822 (2021).

    Article  CAS  Google Scholar 

  51. T. T. Feng, G. Z. Yang, S. Zhang, Z. Q. Xu, H. P. Zhou and M. Q. Wu, Chem. Eng. J., 433, 134138 (2022).

    Article  CAS  Google Scholar 

  52. K. Sodeyama, Y. Igarashi, T. Nakayama, Y. Tateyama and M. Okada, Phys. Chem. Chem. Phys., 20, 22585 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. S. Shahruddin, G. Jimenez-Serratos, G. J. P. Britovsek, O. K. Matar and E. A. Muller, Sci. Rep.-Uk, 9, 1002 (2019).

    Article  CAS  Google Scholar 

  54. C. Capiglia, Y. Saito, H. Kageyama, P. Mustarelli, T. Iwamoto, T. Tabuchi and H. Tukamoto, J. Power Sources, 81, 859 (1999).

    Article  Google Scholar 

  55. A. Nyman, M. Behm and G. Lindbergh, Electrochim. Acta, 53, 6356 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Technology Development Program to Solve Climate Changes through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (NRF-2021M1A2A2038142). This research was also supported by the Chung-Ang University Research Scholarship Grants in 2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byung Gon Kim or Janghyuk Moon.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic Supplementary Material

11814_2022_1364_MOESM1_ESM.pdf

Data-driven designs and multi-scale simulations of enhanced ion transport in low-temperature operation for lithium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, H., Park, Y., Kim, JH. et al. Data-driven designs and multi-scale simulations of enhanced ion transport in low-temperature operation for lithium-ion batteries. Korean J. Chem. Eng. 40, 539–547 (2023). https://doi.org/10.1007/s11814-022-1364-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1364-0

Keywords

Navigation