Skip to main content

Advertisement

Log in

Negative pressure cavitation fractional precipitation for the purification of paclitaxel from Taxus chinensis

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The precipitation efficiency of paclitaxel from Taxus chinensis was remarkably improved through negative pressure cavitation fractional precipitation. When paclitaxel was precipitated under a negative pressure of −200 mmHg, almost all of the paclitaxel (<97%) could be recovered in a short operation time (1 min). The precipitation rate constant was calculated using the JMAK equation for kinetic analysis. The rate constant in the case of negative pressure (−50 to −200 mmHg) cavitation fractional precipitation increased by 2.147–6.046 times compared to fractional precipitation without negative pressure. The change of activation energy by the negative pressure (−50 to−200 mmHg) was also calculated using the Arrhenius equation. The activation energy changes were −1,767 to −4,161 J/mol, implying that the activation energy could be reduced by introducing negative pressure, resulting in an increased precipitation rate. In addition, the application of negative pressure reduced the size of the precipitate by 3.3 times and increased the diffusion coefficient of paclitaxel by 4.4 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. Zhu and L. Chen, Cell. Mol. Biol. Lett., 24, 40 (2019).

    Article  Google Scholar 

  2. J. M. Park and J. H. Kim, Korean Chem. Eng. Res., 59, 106 (2021).

    CAS  Google Scholar 

  3. Y. Wei, X. Pu and L. Zhao, Oncol. Rep., 37, 3159 (2017).

    Article  CAS  Google Scholar 

  4. Z. Tan, Q. Li, C. Wang, W. Zhou, Y. Yang, H. Wang, Y. Yi and F. Li, Molecules, 22, 1483 (2017).

    Article  Google Scholar 

  5. M. Ghorbani, F. Pourjafar, M. Saffari and Y. Asgari, Meta Gene, 26, 100800 (2020).

    Article  Google Scholar 

  6. T. Sun, Y. Liu, M. Li, H. Yu and H. Piao, Mol. Cell. Probes, 53, 101602 (2020).

    Article  CAS  Google Scholar 

  7. B. Modarresi-Darreh, K. Kamali, S. M. Kalantar, H. Dehghanizadeh and B. Aflatoonian, Eurasia J. Biosci., 12, 413 (2018).

    CAS  Google Scholar 

  8. M. Shirshekanb, H. Rezadoost, M. Javanbakht and A. R. Ghassempour, Iran. J. Pharm. Res., 16, 1396 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. H. J. Kang and J. H. Kim, Process Biochem., 99, 316 (2020).

    Article  CAS  Google Scholar 

  10. H. W. Seo and J. H. Kim, Process Biochem., 87, 238 (2019).

    Article  CAS  Google Scholar 

  11. S. H. Pyo, H. B. Park, B. K. Song, B. H. Han and J. H. Kim, Process Biochem., 39, 1985 (2004).

    Article  CAS  Google Scholar 

  12. T. J. McPartland, R. A. Patil, M. F. Malone and S. C. Roberts, Biotechnol. Prog., 28, 990 (2012).

    Article  CAS  Google Scholar 

  13. J. H. Kim, I. S. Kang, H. K. Choi, S. S. Hong and H. S. Lee, Biotechnol. Lett., 22, 1753 (2000).

    Article  CAS  Google Scholar 

  14. S. B. Oguzkan, B. Karagul, A. Uzun, O. O. Guler and H. I. Ugras, Int. J. Pharmacol., 14, 76 (2018).

    Article  CAS  Google Scholar 

  15. S. I. Jeon, S. Y. Mun and J. H. Kim, Process Biochem., 41, 276 (2006).

    Article  CAS  Google Scholar 

  16. K. Y. Jeon and J. H. Kim, Process Biochem., 44, 736 (2009).

    Article  CAS  Google Scholar 

  17. J. Y. Lee and J. H. Kim, Process Biochem., 47, 2388 (2012).

    Article  CAS  Google Scholar 

  18. C. G. Lee and J. H. Kim, Process Biochem., 49, 1370 (2014).

    Article  CAS  Google Scholar 

  19. B. S. Schueller and R. T. Yang, Ind. Eng. Chem. Res., 40, 4912 (2001).

    Article  CAS  Google Scholar 

  20. H. J. Kang and J. H. Kim, Biotechnol. Bioprocess Eng., 24, 513 (2019).

    Article  CAS  Google Scholar 

  21. S. R. Oh and J. H. Kim, Korean J. Chem. Eng., 38, 480 (2021).

    Article  CAS  Google Scholar 

  22. S. V. Dalvi and R. N. Dave, Int. J. Pharm., 387, 172 (2010).

    Article  CAS  Google Scholar 

  23. C. G. Lee and J. H. Kim, Process Biochem., 59, 216 (2017).

    Article  CAS  Google Scholar 

  24. S. V. Dalvi and M. D. Yadav, Ultrason. Sonochem., 24, 114 (2015).

    Article  CAS  Google Scholar 

  25. H. J. Kang and M. S. Thesis, Kongju National University, Cheonan, Korea (2021).

  26. P. Khadka, J. Ro, H. Kim, I. Kim, J. T. Kim, H. Kim, J. M. Cho, G. Yun and J. Lee, Asian J. Pharm. Sci., 9, 304 (2014).

    Article  Google Scholar 

  27. D. Ma, J. S. Marshall and J. Wu, J. Acoust. Soc. Am., 114, 3496 (2018).

    Article  Google Scholar 

  28. Z. Guo, A. G. Jones and N. Li, Chem. Eng. Sci., 61, 1617 (2008).

    Article  Google Scholar 

  29. L. Wolloch and J. Kost, J. Control. Release, 148, 204 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Government of Korea (MSIT) (Grant Number: 2021R1A2C1003186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, HS., Kim, JH. Negative pressure cavitation fractional precipitation for the purification of paclitaxel from Taxus chinensis. Korean J. Chem. Eng. 39, 58–62 (2022). https://doi.org/10.1007/s11814-021-0959-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0959-1

Keywords

Navigation